scholarly journals Biotinylation of the Neospora caninum parasitophorous vacuole reveals novel dense granule proteins

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Congshan Yang ◽  
Chenrong Wang ◽  
Jing Liu ◽  
Qun Liu

Abstract Background Neospora caninum is an obligate intracellular parasite that invades host cells and replicates within the parasitophorous vacuole (PV), which resists fusion with host cell lysosomal compartments. To modify the PV, the parasite secretes an array of proteins, including dense granule proteins (GRAs). The vital role of GRAs in the Neospora life cycle cannot be overestimated. Despite this important role, only a subset of these proteins have been identified, and most of their functions have not been elucidated. Our previous study demonstrated that NcGRA17 is specifically targeted to the delimiting membrane of the parasitophorous vacuole membrane (PVM). In this study, we utilize proximity-dependent biotin identification (BioID) to identify novel components of the dense granules. Methods NcGRA17 was BirA* epitope-tagged in the Nc1 strain utilizing the CRISPR/Cas9 system to create a fusion of NcGRA17 with the biotin ligase BirA*. The biotinylated proteins were affinity-purified for mass spectrometric analysis, and the candidate GRA proteins from BioID data set were identified by gene tagging. To verify the biological role of novel identified GRA proteins, we constructed the NcGRA23 and NcGRA11 (a–e) knockout strains using the CRISPR/Cas9 system and analyzed the phenotypes of these mutants. Results Using NcGRA17-BirA* fusion protein as bait, we have identified some known GRAs and verified localization of 11 novel GRA proteins by gene endogenous tagging or overexpression in the Nc1 strain. We proceeded to functionally characterize NcGRA23 and NcGRA11 (a–e) by gene knockout. The lack of NcGRA23 or NcGRA11 (a–e) did not affect the parasite propagation in vitro and virulence in vivo. Conclusions In summary, our findings reveal that BioID is effective in discovering novel constituents of N. caninum dense granules. The exact biological functions of the novel GRA proteins are yet unknown, but this could be explored in future studies. Graphical abstract

mBio ◽  
2016 ◽  
Vol 7 (4) ◽  
Author(s):  
Santhosh M. Nadipuram ◽  
Elliot W. Kim ◽  
Ajay A. Vashisht ◽  
Andrew H. Lin ◽  
Hannah N. Bell ◽  
...  

ABSTRACT Toxoplasma gondii is an obligate intracellular parasite that invades host cells and replicates within a unique parasitophorous vacuole. To maintain this intracellular niche, the parasite secretes an array of dense granule proteins (GRAs) into the nascent parasitophorous vacuole. These GRAs are believed to play key roles in vacuolar remodeling, nutrient uptake, and immune evasion while the parasite is replicating within the host cell. Despite the central role of GRAs in the Toxoplasma life cycle, only a subset of these proteins have been identified, and many of their roles have not been fully elucidated. In this report, we utilize the promiscuous biotin ligase BirA* to biotinylate GRA proteins secreted into the vacuole and then identify those proteins by affinity purification and mass spectrometry. Using GRA-BirA* fusion proteins as bait, we have identified a large number of known and candidate GRAs and verified localization of 13 novel GRA proteins by endogenous gene tagging. We proceeded to functionally characterize three related GRAs from this group (GRA38, GRA39, and GRA40) by gene knockout. While Δ gra38 and Δ gra40 parasites showed no altered phenotype, disruption of GRA39 results in slow-growing parasites that contain striking lipid deposits in the parasitophorous vacuole, suggesting a role in lipid regulation that is important for parasite growth. In addition, parasites lacking GRA39 showed dramatically reduced virulence and a lower tissue cyst burden in vivo . Together, the findings from this work reveal a partial vacuolar proteome of T. gondii and identify a novel GRA that plays a key role in parasite replication and pathogenesis. IMPORTANCE Most intracellular pathogens reside inside a membrane-bound vacuole within their host cell that is extensively modified by the pathogen to optimize intracellular growth and avoid host defenses. In Toxoplasma , this vacuole is modified by a host of secretory GRA proteins, many of which remain unidentified. Here we demonstrate that in vivo biotinylation of proximal and interacting proteins using the promiscuous biotin ligase BirA* is a powerful approach to rapidly identify vacuolar GRA proteins. We further demonstrate that one factor identified by this approach, GRA39, plays an important role in the ability of the parasite to replicate within its host cell and cause disease.


Parasitology ◽  
1991 ◽  
Vol 103 (3) ◽  
pp. 321-329 ◽  
Author(s):  
A. Achbarou ◽  
O. Mercereau-Puijalon ◽  
A. Sadak ◽  
B. Fortier ◽  
M. A. Leriche ◽  
...  

The biosynthesis and fate of 4 different dense granule proteins ofToxoplasma gondiiwere studied with 3 monoclonal antibodies raised against tachyzoites and 1 polyclonal antibody raised against a recombinant protein. These proteins have the following molecular weights: 27 kDa (GRA 1), 28 kDa (GRA 2), 30 kDa (GRA 3) and 40 kDa (GRA 4). All four proteins were found in dense granules by immunoelectron microscopy; inT. gondii-infected cells, they were found in the vacuolar network but, in addition, GRA 3 was also detected on the parasitophorous vacuole membrane. Therefore, dense granule contents undergo differential targeting when exocytosed in the parasitophorous vacuole. Metabolic labelling and immunoprecipitation showed that GRA 2 and GRA 3 were processed from lower molecular weight precursors, and that GRA 2 and GRA 4 incorporated [3H] glucosamine and are thus likely to be glycosylated.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Margret Leineweber ◽  
Katrin Spekker-Bosker ◽  
Vanessa Ince ◽  
Gereon Schares ◽  
Andrew Hemphill ◽  
...  

The obligate intracellular apicomplexan parasiteNeospora caninum (N. caninum)is closely related toToxoplasma gondii (T. gondii). The dense granules, which are present in all apicomplexan parasites, are important secretory organelles. Dense granule (GRA) proteins are released into the parasitophorous vacuole (PV) following host cell invasion and are known to play important roles in the maintenance of the host-parasite relationship and in the acquisition of nutrients. Here, we provide a detailed characterization of theN. caninumdense granule protein NcGRA9. The in silico genomic organization and key protein characteristics are described. Immunofluorescence-based localization studies revealed that NcGRA9 is located in the dense granules and is released into the interior of the PV following host cell invasion. Immunogold-electron microscopy confirmed the dense granule localization and showed that NcGRA9 is associated with the intravacuolar network. In addition, NcGRA9 is found in the “excreted secreted antigen” (ESA) fraction ofN. caninum. Furthermore, by analysing the distribution of truncated versions of NcGRA9, we provide evidence that the C-terminal region of this protein is essential for the targeting of NcGRA9 into the dense granules ofN. caninum, and the truncated proteins show reduced secretion.


2008 ◽  
Vol 76 (12) ◽  
pp. 5853-5861 ◽  
Author(s):  
Joe Dan Dunn ◽  
Sandeep Ravindran ◽  
Seon-Kyeong Kim ◽  
John C. Boothroyd

ABSTRACT The obligate intracellular parasite Toxoplasma gondii infects warm-blooded animals throughout the world and is an opportunistic pathogen of humans. As it invades a host cell, Toxoplasma forms a novel organelle, the parasitophorous vacuole, in which it resides during its intracellular development. The parasite modifies the parasitophorous vacuole and its host cell with numerous proteins delivered from rhoptries and dense granules, which are secretory organelles unique to the phylum Apicomplexa. For the majority of these proteins, little is known other than their localization. Here we show that the dense granule protein GRA7 is phosphorylated but only in the presence of host cells. Within 10 min of invasion, GRA7 is present in strand-like structures in the host cytosol that contain rhoptry proteins. GRA7 strands also contain GRA1 and GRA3. Independently of its phosphorylation state, GRA7 associates with the rhoptry proteins ROP2 and ROP4 in infected host cells. This is the first report of interactions between proteins secreted from rhoptries and dense granules.


Parasitology ◽  
2005 ◽  
Vol 131 (2) ◽  
pp. 169-179 ◽  
Author(s):  
F. L. HENRIQUEZ ◽  
M. B. NICKDEL ◽  
R. MCLEOD ◽  
R. E. LYONS ◽  
K. LYONS ◽  
...  

Studies using antibodies to immunolocalize the Toxoplasma gondii dense granule protein GRA3, have shown that this protein associates strongly with the parasitophorous vacuole membrane (PVM). However, as there was no predicted membrane-spanning domain this highlighted an unanswered paradox. We demonstrate that the previously published sequence for GRA3 is actually an artificial chimera of 2 proteins. One protein, of molecular weight 65 kDa, shares the C-terminus with published GRA3 and possesses no significant sequence similarity with any protein thus far deposited in Genbank. The second, with a predicted molecular weight of 24 kDa shares the N-terminal region, is recognized by the monoclonal antibody 2H11 known to react with the dense granules of T. gondii and is therefore the authentic GRA3. The corrected GRA3 has an N-terminal secretory signal sequence and a transmembrane domain consistent with its insertion into the PVM. Antibodies to recombinant GRA3 recognize a protein of 24 kDa in T. gondii excretory–secretory antigen preparations. The signal peptide is necessary and sufficient to target GFP to the dense granules and parasitophorous vacuole. A homologue was identified in Neospora caninum. Finally, GRA3 possesses a dilysine ‘KKXX’ endoplasmic reticulum (ER) retrieval motif that rationalizes its association with PVM and possibly the host cell ER.


1987 ◽  
Author(s):  
C T Poll ◽  
J Westwick

Fura 2 is one of a recently-introduced family of Ca++ indicators with improved fluorescent properties compared to quin 2 (Grynkiewicz et al 1985). This study has examined the role of [Ca++]i in thrombin-induced dense granule release using prostacyclin-washed human platelets loaded with either thedense granule marker 14C-5HT (5HT) alone or with 5HT together with quin 2 ([quin2]i = 0.8mM) or fura 2 ([fura 2]i 20-30µM). In the presence of ImM extracellular calcium concentration ([Ca++]i) the [Ca++]e in quin 2 and fura 2 loaded platelets was 93±2 (n=10 experiments) and 133±0.3nM (n=12 experiments) respectively. In either quin 2 or fura 2 loaded platelets suspended in the presence of ImM [Ca++]e, thrombin (0.23-23.InM) promoted a rapid (in secs)concentration-dependent elevation of [Ca++]i from basal values to levels l-2µM, together with a parallel release of dense granules almost identical to that obtained with thrombin in non dye loaded platelets. In fura 2 loaded cells, removal of [Ca++]e inhibited the elevation of [Ca++]i induced by a sub-maximal concentration of thrombin (0.77nM) by 43+5% (n=4) but interestingly had no significant effect (p<0.05) on the rise in [Ca++]i elicited by low thrombin doses (0.231nM). Neither did lowering [Ca++]e inhibit the release of 5HT evoked by thrombin ( 0.231-23.InM) from either fura 2 loaded or non dye loaded platelets. In contrast, in quin 2 loaded platelets, removal of [Ca++]e inhibited the thrombin (0.231-23.InM) stimulated rise in [Ca++]i-by 90% and the 5HT release response to either low (0.231nM), sub-maximal (0.77nM) or maximal (23.InM) thrombin by 100% (n=4), 87+2°/o (n=6)and 2+l°/o (n=4) respectively. Fura 2 but not quin 2 loaded cells suspended in ImM [Ca++]e exhibited a Ca++ response to thrombin concentrations >2.31nM which could be separated into a rapid phasic component and a more sustained 'tonic' like component inhibitable by removal of [Ca++]e or by addition of ImM Ni++ . These data suggest the use of fura 2 rather than quin 2 for investigating stimulus response coupling in platelets, particularly when [Ca++]e is less than physiological. We thank the British Heart Foundation and Ciba-Geigy USA for financial support.


2004 ◽  
Vol 200 (9) ◽  
pp. 1135-1143 ◽  
Author(s):  
Luciana O. Andrade ◽  
Norma W. Andrews

Trypomastigotes, the highly motile infective forms of Trypanosoma cruzi, are capable of infecting several cell types. Invasion occurs either by direct recruitment and fusion of lysosomes at the plasma membrane, or through invagination of the plasma membrane followed by intracellular fusion with lysosomes. The lysosome-like parasitophorous vacuole is subsequently disrupted, releasing the parasites for replication in the cytosol. The role of this early residence within lysosomes in the intracellular cycle of T. cruzi has remained unclear. For several other cytosolic pathogens, survival inside host cells depends on an early escape from phagosomes before lysosomal fusion. Here, we show that when lysosome-mediated T. cruzi invasion is blocked through phosophoinositide 3-kinase inhibition, a significant fraction of the internalized parasites are not subsequently retained inside host cells for a productive infection. A direct correlation was observed between the lysosomal fusion rates after invasion and the intracellular retention of trypomastigotes. Thus, formation of a parasitophorous vacuole with lysosomal properties is essential for preventing these highly motile parasites from exiting host cells and for allowing completion of the intracellular life cycle.


Blood ◽  
1988 ◽  
Vol 72 (5) ◽  
pp. 1717-1725 ◽  
Author(s):  
HJ Weiss ◽  
B Lages

Abstract Aggregation responses and thromboxane (Tx) formation in ten patients with storage pool deficiency (SPD) specific to the dense granules (delta-SPD) were studied to assess further the role of dense granule adenosine diphosphate (ADP) in mediating platelet aggregation by epinephrine. The ability of epinephrine to elicit secondary aggregation (SA) responses was highly variable in delta-SPD when tested at 5 mumol/L epinephrine, but was consistently abnormal when tested over a range of concentrations. The occurrence of SA in both delta-SPD patients and normal subjects was correlated with the magnitude of the rate of primary aggregation (PA). This PA rate was normal, on average, for the entire patient group but was greater in patients with more consistent SA responses. The PA findings were related to the Kd value obtained in binding studies with 3H-yohimbine, but not with the number of alpha 2-receptor sites. Studies on Tx production (assessed by radioimmunoassay of TxB2) showed that the ability to synthesize Tx from arachidonate was not impaired in delta-SPD, and that there was an absolute positive correlation between epinephrine-induced SA and Tx production. Aggregation in delta-SPD platelets in response to the Tx receptor agonist U44069 was consistently decreased, but could be corrected by addition of ADP. The results of the study suggest that dense granule-derived ADP is not required for PA by epinephrine, but mediates SA as a synergistic agonist with TxA2. This role of ADP in SA may be elucidated more precisely by further studies on platelet activation processes in delta-SPD.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Alicja M. Cygan ◽  
Terence C. Theisen ◽  
Alma G. Mendoza ◽  
Nicole D. Marino ◽  
Michael W. Panas ◽  
...  

ABSTRACT Toxoplasma gondii is a ubiquitous, intracellular protozoan that extensively modifies infected host cells through secreted effector proteins. Many such effectors must be translocated across the parasitophorous vacuole (PV), in which the parasites replicate, ultimately ending up in the host cytosol or nucleus. This translocation has previously been shown to be dependent on five parasite proteins: MYR1, MYR2, MYR3, ROP17, and ASP5. We report here the identification of several MYR1-interacting and novel PV-localized proteins via affinity purification of MYR1, including TGGT1_211460 (dubbed MYR4), TGGT1_204340 (dubbed GRA54), and TGGT1_270320 (PPM3C). Further, we show that three of the MYR1-interacting proteins, GRA44, GRA45, and MYR4, are essential for the translocation of the Toxoplasma effector protein GRA16 and for the upregulation of human c-Myc and cyclin E1 in infected cells. GRA44 and GRA45 contain ASP5 processing motifs, but like MYR1, processing at these sites appears to be nonessential for their role in protein translocation. These results expand our understanding of the mechanism of effector translocation in Toxoplasma and indicate that the process is highly complex and dependent on at least eight discrete proteins. IMPORTANCE Toxoplasma is an extremely successful intracellular parasite and important human pathogen. Upon infection of a new cell, Toxoplasma establishes a replicative vacuole and translocates parasite effectors across this vacuole to function from the host cytosol and nucleus. These effectors play a key role in parasite virulence. The work reported here newly identifies three parasite proteins that are necessary for protein translocation into the host cell. These results significantly increase our knowledge of the molecular players involved in protein translocation in Toxoplasma-infected cells and provide additional potential drug targets.


Sign in / Sign up

Export Citation Format

Share Document