scholarly journals Increased Leishmania infantum resistance to miltefosine and amphotericin B after treatment of a dog with miltefosine and allopurinol

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Gustavo Gonçalves ◽  
Monique Paiva Campos ◽  
Alessandra Silva Gonçalves ◽  
Lia Carolina Soares Medeiros ◽  
Fabiano Borges Figueiredo

Abstract Background Leishmania infantum is the most important etiological agent of visceral leishmaniasis in the Americas and Mediterranean region, and the dog is the main host. Miltefosine was authorized to treat canine leishmaniasis (CanL) in Brazil in 2017, but there is a persistent fear of the emergence of parasites resistant not only to this drug but, through cross-resistance mechanisms, also to meglumine antimoniate and amphotericin B. Additionally, the literature shows that acquisition of resistance is followed by increased parasite fitness, with higher rates of proliferation, infectivity and metacyclogenesis, which are drivers of parasite virulence. In this context, the aim of this study was to analyze the impact of treating a dog with miltefosine and allopurinol on the generation of parasites resistant to miltefosine, amphotericin B and meglumine antimoniate. Methods In vitro susceptibility tests were conducted against miltefosine, amphotericin B and meglumine antimoniate with T0 (parasites isolated from a dog before treatment with miltefosine plus allopurinol), T1 (after 1 course of treatment) and T2 (after 2 courses of treatment) isolates. The rates of cell proliferation, infectivity and metacyclogenesis of the isolates were also evaluated. Results The results indicate a gradual increase in parasite resistance to miltefosine and amphotericin B with increasing the number of treatment courses. An increasing trend in the metacyclogenesis rate of the parasites was also observed as drug resistance increased. Conclusion The data indicates an increased L. infantum resistance to miltefosine and amphotericin B after the treatment of a dog with miltefosine plus allopurinol. Further studies with a larger number of L. infantum strains isolated from dogs with varied immune response profiles and undergoing different treatment regimes, are advocated. Graphical Abstract

2021 ◽  
Author(s):  
Gustavo Gonçalves ◽  
Monique Paiva Campos ◽  
Alessandra Silva Gonçalves ◽  
Lia Carolina Soares Medeiros ◽  
Fabiano Borges Figueiredo

Visceral leishmaniasis (VL) is the most severe form of leishmaniasis and is caused by Leishmania infantum in the Americas. Since the use of Milteforam™ was authorized to treat canine visceral leishmaniasis (CVL) in Brazil in 2017, there has also been fear of the emergence of parasites resistant to this drug and, through cross-resistance mechanisms, to meglumine antimoniate and amphotericin B. Additionally, the literature shows that acquisition of resistance is followed by increased parasite fitness, with higher rates of proliferation, infectivity and metacyclogenesis, which are determining factors for parasite virulence. In this context, this study aims to analyze the impact of treating a dog with Milteforan™ on the generation of parasites resistant to miltefosine, meglumine antimoniate, and amphotericin B. To this end, in vitro susceptibility tests were conducted against these drugs with T0 (parasites isolated from the dog before treatment with Milteforan™), T1 (after one course of treatment), and T2 (after two courses of treatment) isolates. The rates of cell proliferation, infectivity, and metacyclogenesis of the isolates were also evaluated. The results indicate a gradual increase in parasite resistance to miltefosine and amphotericin B with increasing the number of treatment courses. A trend increase in the metacyclogenesis rate of the parasites was also observed as drug resistance increased. Therefore, treatment of CVL with Milteforan™ induces resistance to miltefosine and amphotericin B as well as changes in parasite fitness, and may have an impact on animal and human public health.


2008 ◽  
Vol 53 (2) ◽  
pp. 835-838 ◽  
Author(s):  
Dhiraj Kumar ◽  
Arpita Kulshrestha ◽  
Ruchi Singh ◽  
Poonam Salotra

ABSTRACT Indian Leishmania donovani isolates (n = 19) from regional zones representing various levels of antimony resistance displayed significantly (P < 0.01) correlated results with respect to in vitro susceptibility to the antileishmanial drugs sodium antimony gluconate, amphotericin B, and Miltefosine, raising the possibility of cross-resistance mechanisms operating in the field isolates. The results of gene expression analysis of LdMT and LdRos3 were suggestive of alternate mechanisms of Miltefosine susceptibility in the isolates.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Sophie Hartuis ◽  
Estelle Robert ◽  
Lisa Lombardi ◽  
Geraldine Butler ◽  
Patrice Le Pape ◽  
...  

Introduction Candida parapsilosis is both a commensal/saprophytic yeast of the human skin and an opportunistic pathogen which can be responsible for life-threatening infections. The increasing reports of clonal outbreaks involving azole-resistant C. parapsilosis in the clinical setting is worrisome and urges for a better understanding of antifungal resistance in this species. Previous studies have identified mutations in key genes which can explain acquired fluconazole resistance. Reverse genetics approaches are now warranted to confirm their involvement and to determine whether they can affect other clinically-licensed antifungals. Here, we used a CRISPR-Cas9 technique to study the relative contributions of clinically-derived mutations to antifungal resistance and provide answers to these questions. Materials and Methods Six clinically-derived mutations were selected (ERG11Y132F, ERG11K143R,ERG11R398I, TAC1G650E, MRR1G583R, ERG3G111R) to be engineered in two C. parapsilosis fluconazole-susceptible backgrounds (ATCC22019, STZ5) using a previously described CRISPR-Cas9 method. In vitro susceptibility of the transformants to fluconazole, voriconazole, posaconazole, isavuconazole and micafungin was determined by Etest®. Results/Discussion The impact on fluconazole susceptibility was highly variable depending on the residue/gene involved, but roughly similar between the two genetic backgrounds. All but two(ERG11R398I, ERG3G111R) conferred fluconazole resistance, though the highest MIC increase was observed for MRR1G583R (≥650 fold). As expected in a diploid species, we noted an impact of allelic dosage. Some kind of cross-resistance to the other azoles was noted from some mutations, although the impact was lower for posaconazole and isavuconazole, except for MRR1G583R which led to multi-azole resistance. Finally, ERG3G111R increased tolerance to both azoles and echinocandins.


2021 ◽  
Vol 7 (6) ◽  
pp. 419
Author(s):  
Maria Siopi ◽  
Ioanna Efstathiou ◽  
Konstantinos Theodoropoulos ◽  
Spyros Pournaras ◽  
Joseph Meletiadis

Trichophyton isolates with reduced susceptibility to antifungals are now increasingly reported worldwide. We therefore studied the molecular epidemiology and the in vitro antifungal susceptibility patterns of Greek Trichophyton isolates over the last 10 years with the newly released EUCAST reference method for dermatophytes. Literature was reviewed to assess the global burden of antifungal resistance in Trichophyton spp. The in vitro susceptibility of 112 Trichophyton spp. molecularly identified clinical isolates (70 T. rubrum, 24 T. mentagrophytes, 12 T. interdigitale and 6 T. tonsurans) was tested against terbinafine, itraconazole, voriconazole and amorolfine (EUCAST E.DEF 11.0). Isolates were genotyped based on the internal transcribed spacer (ITS) sequences and the target gene squalene epoxidase (SQLE) was sequenced for isolates with reduced susceptibility to terbinafine. All T. rubrum, T. interdigitale and T. tonsurans isolates were classified as wild-type (WT) to all antifungals, whereas 9/24 (37.5%) T. mentagrophytes strains displayed elevated terbinafine MICs (0.25–8 mg/L) but not to azoles and amorolfine. All T. interdigitale isolates belonged to ITS Type II, while T. mentagrophytes isolates belonged to ITS Type III* (n = 11), VIII (n = 9) and VII (n = 4). All non-WT T. mentagrophytes isolates belonged to Indian Genotype VIII and harbored Leu393Ser (n = 5) and Phe397Leu (n = 4) SQLE mutations. Terbinafine resistance rates ranged globally from 0–44% for T. rubrum and 0–76% for T. interdigitale/T. mentagrophytes with strong endemicity. High incidence (37.5%) of terbinafine non-WT T. mentagrophytes isolates (all belonging to ITS Type VIII) without cross-resistance to other antifungals was found for the first time in Greece. This finding must alarm for susceptibility testing of dermatophytes at a local scale particularly in non-responding dermatophytoses.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S793-S793
Author(s):  
Lynn-Yao Lin ◽  
Dmitri Debabov ◽  
William Chang

Abstract Background OXA-48 is a carbapenemase with low-level hydrolytic activity toward cephalosporins. This study evaluated in vitro activities of ceftazidime-avibactam (CAZ-AVI), meropenem (MEM), meropenem-vaborbactam (MVB), ceftolozane-tazobactam (C/T), and other antimicrobial agents against 113 OXA-48-producing Enterobacterales with multiple resistance mechanisms collected in a 2017–2018 global surveillance program. Methods Nonduplicate clinical isolates of 113 Enterobacterales were collected from medical centers in 25 countries in 2017–2018. In vitro susceptibility tests were performed by broth microdilution with a custom-made panel consisting of CAZ-AVI, ceftazidime (CAZ), MEM, MVB, C/T, colistin (COL), gentamicin (GEN), levofloxacin (LEV), and amikacin (AMK). Whole genome sequencing or quantitative PCR data were used to analyze resistance mechanisms, such as OXA-48, extended-spectrum β-lactamase (ESBL), original-spectrum β-lactamase (OSBL), and AmpC β-lactamase. Clinical and Laboratory Standards Institute breakpoints were applied for susceptibility interpretations. Results Of 113 OXA-48–producing clinical isolates, 20 carried OXA-48 alone. The remaining 93 isolates carried additional β-lactamases, including 63 with ESBL (CTX-M-15) + OSBL (SHV, TEM), 15 with AmpC (DHA, AAC, CMY) + ESBL (CTX-M-15), and 15 with OSBL (SHV, TEM). 99.1% (all but 1) of all isolates tested were susceptible to CAZ-AVI, whereas 71.7%, 17.7%, and 14.2% were susceptible to MVB, MEM, and C/T, respectively. Among isolates harboring multiple resistance mechanisms (OXA-48 + ESBL + OSBL; n=63), 98.4%, 69.8%, 11.1%, and 7.9% were susceptible to CAZ-AVI, MVB, MEM, and C/T, respectively. Among isolates carrying OXA-48 + AmpC + ESBL + OSBL (n=15), 100%, 66.7%, 13.3%, and 13.3% were susceptible to CAZ-AVI, MVB, MEM, and C/T, respectively (Table). Aminoglycosides (AMK and GEN) and other β-lactams (eg, CAZ) were 20%–90% active against these isolates. COL was the second most effective comparator, inhibiting 83.2% of these isolates. Table Conclusion CAZ-AVI was the most effective agent in this study compared with other antibiotics, including β-lactams, β-lactam–β-lactamase inhibitor combinations, aminoglycosides, and COL, against OXA-48-producing Enterobacterales carrying multiple β-lactamases. Disclosures Lynn-Yao Lin, MS, AbbVie (Employee) Dmitri Debabov, PhD, AbbVie (Employee) William Chang, BS, AbbVie (Employee)


2015 ◽  
Vol 59 (6) ◽  
pp. 3059-3065 ◽  
Author(s):  
C. Pitart ◽  
F. Marco ◽  
T. A. Keating ◽  
W. W. Nichols ◽  
J. Vila

ABSTRACTCeftazidime-avibactam and comparator antibiotics were tested by the broth microdilution method against 200Enterobacteriaceaeand 25Pseudomonas aeruginosastrains resistant to fluoroquinolones (including strains with the extended-spectrum β-lactamase [ESBL] phenotype and ceftazidime-resistant strains) collected from our institution. The MICs and mechanisms of resistance to fluoroquinolone were also studied. Ninety-nine percent of fluoroquinolone-resistantEnterobacteriaceaestrains were inhibited at a ceftazidime-avibactam MIC of ≤4 mg/liter (using the susceptible CLSI breakpoint for ceftazidime alone as a reference). Ceftazidime-avibactam was very active against ESBLEscherichia coli(MIC90of 0.25 mg/liter), ESBLKlebsiella pneumoniae(MIC90of 0.5 mg/liter), ceftazidime-resistant AmpC-producing species (MIC90of 1 mg/liter), non-ESBLE. coli(MIC90of ≤0.125 mg/liter), non-ESBLK. pneumoniae(MIC90of 0.25 mg/liter), and ceftazidime-nonresistant AmpC-producing species (MIC90of ≤0.5 mg/liter). Ninety-six percent of fluoroquinolone-resistantP. aeruginosastrains were inhibited at a ceftazidime-avibactam MIC of ≤8 mg/liter (using the susceptible CLSI breakpoint for ceftazidime alone as a reference), with a MIC90of 8 mg/liter. Additionally, fluoroquinolone-resistant mutants from each species tested were obtainedin vitrofrom two strains, one susceptible to ceftazidime and the other a β-lactamase producer with a high MIC against ceftazidime but susceptible to ceftazidime-avibactam. Thereby, the impact of fluoroquinolone resistance on the activity of ceftazidime-avibactam could be assessed. The MIC90values of ceftazidime-avibactam for the fluoroquinolone-resistant mutant strains ofEnterobacteriaceaeandP. aeruginosawere ≤4 mg/liter and ≤8 mg/liter, respectively. We conclude that the presence of fluoroquinolone resistance does not affectEnterobacteriaceaeandP. aeruginosasusceptibility to ceftazidime-avibactam; that is, there is no cross-resistance.


Sign in / Sign up

Export Citation Format

Share Document