scholarly journals In Vitro Susceptibility of Field Isolates of Leishmania donovani to Miltefosine and Amphotericin B: Correlation with Sodium Antimony Gluconate Susceptibility and Implications for Treatment in Areas of Endemicity

2008 ◽  
Vol 53 (2) ◽  
pp. 835-838 ◽  
Author(s):  
Dhiraj Kumar ◽  
Arpita Kulshrestha ◽  
Ruchi Singh ◽  
Poonam Salotra

ABSTRACT Indian Leishmania donovani isolates (n = 19) from regional zones representing various levels of antimony resistance displayed significantly (P < 0.01) correlated results with respect to in vitro susceptibility to the antileishmanial drugs sodium antimony gluconate, amphotericin B, and Miltefosine, raising the possibility of cross-resistance mechanisms operating in the field isolates. The results of gene expression analysis of LdMT and LdRos3 were suggestive of alternate mechanisms of Miltefosine susceptibility in the isolates.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Gustavo Gonçalves ◽  
Monique Paiva Campos ◽  
Alessandra Silva Gonçalves ◽  
Lia Carolina Soares Medeiros ◽  
Fabiano Borges Figueiredo

Abstract Background Leishmania infantum is the most important etiological agent of visceral leishmaniasis in the Americas and Mediterranean region, and the dog is the main host. Miltefosine was authorized to treat canine leishmaniasis (CanL) in Brazil in 2017, but there is a persistent fear of the emergence of parasites resistant not only to this drug but, through cross-resistance mechanisms, also to meglumine antimoniate and amphotericin B. Additionally, the literature shows that acquisition of resistance is followed by increased parasite fitness, with higher rates of proliferation, infectivity and metacyclogenesis, which are drivers of parasite virulence. In this context, the aim of this study was to analyze the impact of treating a dog with miltefosine and allopurinol on the generation of parasites resistant to miltefosine, amphotericin B and meglumine antimoniate. Methods In vitro susceptibility tests were conducted against miltefosine, amphotericin B and meglumine antimoniate with T0 (parasites isolated from a dog before treatment with miltefosine plus allopurinol), T1 (after 1 course of treatment) and T2 (after 2 courses of treatment) isolates. The rates of cell proliferation, infectivity and metacyclogenesis of the isolates were also evaluated. Results The results indicate a gradual increase in parasite resistance to miltefosine and amphotericin B with increasing the number of treatment courses. An increasing trend in the metacyclogenesis rate of the parasites was also observed as drug resistance increased. Conclusion The data indicates an increased L. infantum resistance to miltefosine and amphotericin B after the treatment of a dog with miltefosine plus allopurinol. Further studies with a larger number of L. infantum strains isolated from dogs with varied immune response profiles and undergoing different treatment regimes, are advocated. Graphical Abstract


2016 ◽  
Vol 2 (1) ◽  
pp. 8-12
Author(s):  
Murshed Alam ◽  
AKM Shamsuzzaman ◽  
AKM Musa ◽  
Abul Hossain Khan ◽  
Md Chand Mahmud ◽  
...  

Kala-azar has been uprising concomitantly with drug-resistant strains of the causatinve agent, particularly in the neighbouring India. The actual perspective of drug resistance in Leishmania donovani in Bangladesh is yet to be explored. So, this prospective study, as a preliminary one, was done to observe in vitro drug responsiveness against Sodium Antimony Gluconate (SAG) and Amphotericin B of 41 strains of L. donovani isolated from Kala-azar cases. The cases (n=41) were selected from 45 clinically suspected febrile patients those who were positive for Kala-azar by immunochromatographic test (ICT). The selected cases were subsequently confirmed as Kala-azar by detection of Leishmania Donovan (LD) bodies from bone marrow aspirates (n=38) by microscopy and/or showing promastigotes in modified McNeal, Nicole and Novy (NNN) media (n=41). Minimum Inhibitory Concentrations (MICs) of SAG and Amphotericin B were seen in relation with history of previous SAG therapy of the patients. Among 08 strains with previous SAG therapy, MICs of SAG were 500 µg in 05 (62.5%) and 250 µg in 03 (37.5%) cases. In remaining 33 strains with no previous SAG therapy, MIC of the drug was 250 µg. In all 41 strains, MIC of Amphotericin B was 05 µg irrespective of the history of previous SAG therapy. The study revealed that strains of L. donovani with low responsiveness to standard dose of pentavalent antimonials have been started to appear in our community that needs further study at community level in a larger population.Bangladesh J Med Microbiol 2008; 02 (01): 8-12DOI: http://dx.doi.org/10.3329/bjmm.v2i1.21782


2021 ◽  
Author(s):  
Gustavo Gonçalves ◽  
Monique Paiva Campos ◽  
Alessandra Silva Gonçalves ◽  
Lia Carolina Soares Medeiros ◽  
Fabiano Borges Figueiredo

Visceral leishmaniasis (VL) is the most severe form of leishmaniasis and is caused by Leishmania infantum in the Americas. Since the use of Milteforam™ was authorized to treat canine visceral leishmaniasis (CVL) in Brazil in 2017, there has also been fear of the emergence of parasites resistant to this drug and, through cross-resistance mechanisms, to meglumine antimoniate and amphotericin B. Additionally, the literature shows that acquisition of resistance is followed by increased parasite fitness, with higher rates of proliferation, infectivity and metacyclogenesis, which are determining factors for parasite virulence. In this context, this study aims to analyze the impact of treating a dog with Milteforan™ on the generation of parasites resistant to miltefosine, meglumine antimoniate, and amphotericin B. To this end, in vitro susceptibility tests were conducted against these drugs with T0 (parasites isolated from the dog before treatment with Milteforan™), T1 (after one course of treatment), and T2 (after two courses of treatment) isolates. The rates of cell proliferation, infectivity, and metacyclogenesis of the isolates were also evaluated. The results indicate a gradual increase in parasite resistance to miltefosine and amphotericin B with increasing the number of treatment courses. A trend increase in the metacyclogenesis rate of the parasites was also observed as drug resistance increased. Therefore, treatment of CVL with Milteforan™ induces resistance to miltefosine and amphotericin B as well as changes in parasite fitness, and may have an impact on animal and human public health.


2021 ◽  
Vol 7 (6) ◽  
pp. 419
Author(s):  
Maria Siopi ◽  
Ioanna Efstathiou ◽  
Konstantinos Theodoropoulos ◽  
Spyros Pournaras ◽  
Joseph Meletiadis

Trichophyton isolates with reduced susceptibility to antifungals are now increasingly reported worldwide. We therefore studied the molecular epidemiology and the in vitro antifungal susceptibility patterns of Greek Trichophyton isolates over the last 10 years with the newly released EUCAST reference method for dermatophytes. Literature was reviewed to assess the global burden of antifungal resistance in Trichophyton spp. The in vitro susceptibility of 112 Trichophyton spp. molecularly identified clinical isolates (70 T. rubrum, 24 T. mentagrophytes, 12 T. interdigitale and 6 T. tonsurans) was tested against terbinafine, itraconazole, voriconazole and amorolfine (EUCAST E.DEF 11.0). Isolates were genotyped based on the internal transcribed spacer (ITS) sequences and the target gene squalene epoxidase (SQLE) was sequenced for isolates with reduced susceptibility to terbinafine. All T. rubrum, T. interdigitale and T. tonsurans isolates were classified as wild-type (WT) to all antifungals, whereas 9/24 (37.5%) T. mentagrophytes strains displayed elevated terbinafine MICs (0.25–8 mg/L) but not to azoles and amorolfine. All T. interdigitale isolates belonged to ITS Type II, while T. mentagrophytes isolates belonged to ITS Type III* (n = 11), VIII (n = 9) and VII (n = 4). All non-WT T. mentagrophytes isolates belonged to Indian Genotype VIII and harbored Leu393Ser (n = 5) and Phe397Leu (n = 4) SQLE mutations. Terbinafine resistance rates ranged globally from 0–44% for T. rubrum and 0–76% for T. interdigitale/T. mentagrophytes with strong endemicity. High incidence (37.5%) of terbinafine non-WT T. mentagrophytes isolates (all belonging to ITS Type VIII) without cross-resistance to other antifungals was found for the first time in Greece. This finding must alarm for susceptibility testing of dermatophytes at a local scale particularly in non-responding dermatophytoses.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S793-S793
Author(s):  
Lynn-Yao Lin ◽  
Dmitri Debabov ◽  
William Chang

Abstract Background OXA-48 is a carbapenemase with low-level hydrolytic activity toward cephalosporins. This study evaluated in vitro activities of ceftazidime-avibactam (CAZ-AVI), meropenem (MEM), meropenem-vaborbactam (MVB), ceftolozane-tazobactam (C/T), and other antimicrobial agents against 113 OXA-48-producing Enterobacterales with multiple resistance mechanisms collected in a 2017–2018 global surveillance program. Methods Nonduplicate clinical isolates of 113 Enterobacterales were collected from medical centers in 25 countries in 2017–2018. In vitro susceptibility tests were performed by broth microdilution with a custom-made panel consisting of CAZ-AVI, ceftazidime (CAZ), MEM, MVB, C/T, colistin (COL), gentamicin (GEN), levofloxacin (LEV), and amikacin (AMK). Whole genome sequencing or quantitative PCR data were used to analyze resistance mechanisms, such as OXA-48, extended-spectrum β-lactamase (ESBL), original-spectrum β-lactamase (OSBL), and AmpC β-lactamase. Clinical and Laboratory Standards Institute breakpoints were applied for susceptibility interpretations. Results Of 113 OXA-48–producing clinical isolates, 20 carried OXA-48 alone. The remaining 93 isolates carried additional β-lactamases, including 63 with ESBL (CTX-M-15) + OSBL (SHV, TEM), 15 with AmpC (DHA, AAC, CMY) + ESBL (CTX-M-15), and 15 with OSBL (SHV, TEM). 99.1% (all but 1) of all isolates tested were susceptible to CAZ-AVI, whereas 71.7%, 17.7%, and 14.2% were susceptible to MVB, MEM, and C/T, respectively. Among isolates harboring multiple resistance mechanisms (OXA-48 + ESBL + OSBL; n=63), 98.4%, 69.8%, 11.1%, and 7.9% were susceptible to CAZ-AVI, MVB, MEM, and C/T, respectively. Among isolates carrying OXA-48 + AmpC + ESBL + OSBL (n=15), 100%, 66.7%, 13.3%, and 13.3% were susceptible to CAZ-AVI, MVB, MEM, and C/T, respectively (Table). Aminoglycosides (AMK and GEN) and other β-lactams (eg, CAZ) were 20%–90% active against these isolates. COL was the second most effective comparator, inhibiting 83.2% of these isolates. Table Conclusion CAZ-AVI was the most effective agent in this study compared with other antibiotics, including β-lactams, β-lactam–β-lactamase inhibitor combinations, aminoglycosides, and COL, against OXA-48-producing Enterobacterales carrying multiple β-lactamases. Disclosures Lynn-Yao Lin, MS, AbbVie (Employee) Dmitri Debabov, PhD, AbbVie (Employee) William Chang, BS, AbbVie (Employee)


2010 ◽  
Vol 77 (3) ◽  
pp. 786-793 ◽  
Author(s):  
Jitender Mehla ◽  
S. K. Sood

ABSTRACTA better understanding of the antimicrobial peptide (AMP) resistance mechanisms of bacteria will facilitate the design of effective and potent AMPs. Therefore, to understand resistance mechanisms and forin vitroassessment, variants ofEnterococcus faecalisthat are resistant to different doses of the fungal AMP alamethicin (Almr) were selected and characterized. The resistance developed was dose dependent, as both doses of alamethicin and degrees of resistance were colinear. The formation of bacterial cell aggregates observed in resistant cells may be the prime mechanism of resistance because overall, a smaller cell surface in aggregated cells is exposed to AMPs. Increased rigidity of the membranes of Almrvariants, because of their altered fatty acids, was correlated with limited membrane penetration by alamethicin. Thus, resistance developed against alamethicin was an adaptation of the bacterial cells through changes in their morphological features and physiological activity and the composition of membrane phospholipids. The Almrvariants showed cross-resistance to pediocin, which indicated that resistance developed against both AMPs may share a mechanism, i.e., an alteration in the cell membrane. High percentages of colorimetric response by both AMPs against polydiacetylene/lipid biomimetic membranes of Almrvariants confirmed that altered phospholipid and fatty acid compositions were responsible for acquisition of resistance. So far, this is the only report of quantification of resistance and cross-resistance using anin vitrocolorimetric approach. Our results imply that a single AMP or AMP analog may be effective against bacterial strains having a common mechanism of resistance. Therefore, an understanding of resistance would contribute to the development of a single efficient, potent AMP against resistant strains that share a mechanism of resistance.


1998 ◽  
Vol 36 (9) ◽  
pp. 2690-2695 ◽  
Author(s):  
Jose A. Vazquez ◽  
Maria T. Arganoza ◽  
Dina Boikov ◽  
Stephanie Yoon ◽  
Jack D. Sobel ◽  
...  

The fungicidal activity of amphotericin B (AmB) was quantitated for several Candida species. Candida albicans andC. tropicalis were consistently susceptible to AmB, with less than 1% survivors after 6 h of exposure to AmB. C. parapsilosis and variants of C. lusitaniae andC. guilliermondii were the most resistant, demonstrating 50 to 90% survivors in this time period and as high as 1% survival after a 24-h exposure time. All Candida species were killed (<1% survivors) after 24 h of exposure to AmB. In contrast, overnight exposure to either fluconazole or itraconazole resulted in pronounced increases in resistance to subsequent exposures to AmB. Most dramatically, C. albicans was able to grow in AmB cultures after azole preexposure. Several other Candida species did not grow in AmB but showed little or no reduction in viability after up to 24 h in AmB. Depending on the growth conditions,Candida cells preexposed to azoles may retain AmB resistance for days after the azoles have been removed. If this in vitro antagonism applies to the clinical setting, treatment of patients with certain antifungal combinations may not be beneficial. The ability of some Candida isolates to survive transient exposures to AmB was not reflected in the in vitro susceptibility changes as measured by standard MIC assays. This finding should be considered in studies attempting to correlate patient outcome with in vitro susceptibilities of clinical fungal isolates. Patients who fail to respond to AmB may be infected with isolates that are classified as susceptible by standard in vitro assays but that may be resistant to transient antifungal exposures which may be more relevant in the clinical setting.


Sign in / Sign up

Export Citation Format

Share Document