scholarly journals The molecular tweezer CLR01 improves behavioral deficits and reduces tau pathology in P301S-tau transgenic mice

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jing Di ◽  
Ibrar Siddique ◽  
Zizheng Li ◽  
Ghattas Malki ◽  
Simon Hornung ◽  
...  

Abstract Background Molecular tweezers (MTs) are broad-spectrum inhibitors of abnormal protein aggregation. A lead MT, called CLR01, has been demonstrated to inhibit the aggregation and toxicity of multiple amyloidogenic proteins in vitro and in vivo. Previously, we evaluated the effect of CLR01 in the 3 × Tg mouse model of Alzheimer’s disease, which overexpresses mutant human presenilin 1, amyloid β-protein precursor, and tau and found that subcutaneous administration of the compound for 1 month led to a robust reduction of amyloid plaques, neurofibrillary tangles, and microgliosis. CLR01 also has been demonstrated to inhibit tau aggregation in vitro and tau seeding in cell culture, yet because in Alzheimer’s disease (AD) and in the 3 × Tg model, tau hyperphosphorylation and aggregation are thought to be downstream of Aβ insults, the study in this model left open the question whether CLR01 affected tau in vivo directly or indirectly. Methods To determine if CLR01 could ameliorate tau pathology directly in vivo, we tested the compound similarly using the P301S-tau (line PS19) mouse model. Mice were administered 0.3 or 1.0 mg/kg per day CLR01 and tested for muscle strength and behavioral deficits, including anxiety- and disinhibition-like behavior. Their brains then were analyzed by immunohistochemical and biochemical assays for pathological forms of tau, neurodegeneration, and glial pathology. Results CLR01 treatment ameliorated muscle-strength deterioration, anxiety-, and disinhibition-like behavior. Improved phenotype was associated with decreased levels of pathologic tau forms, suggesting that CLR01 exerts a direct effect on tau in vivo. Limitations of the study included a relatively short treatment period of the mice at an age in which full pathology is not yet developed. In addition, high variability in this model lowered the statistical significance of the findings of some outcome measures. Conclusions The findings suggest that CLR01 is a particularly attractive candidate for the treatment of AD because it targets simultaneously the two major pathogenic proteins instigating and propagating the disease, amyloid β-protein (Aβ), and tau, respectively. In addition, our study suggests that CLR01 can be used for the treatment of other tauopathies in the absence of amyloid pathology.

2020 ◽  
Author(s):  
Jing Di ◽  
Ibrar Siddique ◽  
Zizheng Li ◽  
Ghattas Malki ◽  
Simon Hornung ◽  
...  

Abstract Background: Molecular tweezers (MTs) are broad-spectrum inhibitors of abnormal protein aggregation. A lead MT, called CLR01, has been demonstrated to inhibit the aggregation and toxicity of multiple amyloidogenic proteins in vitro and in vivo. Previously, we evaluated the effect of CLR01 in the 3×Tg mouse model of Alzheimer’s disease, which overexpresses mutant human presenilin 1, amyloid β-protein precursor, and tau and found that subcutaneous administration of the compound for one month led to a robust reduction of amyloid plaques, neurofibrillary tangles, and microgliosis. CLR01 also has been demonstrated to inhibit tau aggregation in vitro and tau seeding in cell culture, yet because in Alzheimer’s disease (AD) and in the 3×Tg model, tau hyperphosphorylation and aggregation are thought to be downstream of Aβ insults, the study in this model left the question whether CLR01 affected tau in vivo directly or indirectly open.Methods: To determine if CLR01 could ameliorate tau pathology directly in vivo, we tested the compound similarly using the P301S-tau (line PS19) mouse model. Mice were administered 0.3- or 1.0-mg/Kg per day CLR01 and tested for muscle strength and behavioral deficits, including anxiety- and disinhibition-like behavior. Their brains then were analyzed by immunohistochemical and biochemical assays for pathological forms of tau, neurodegeneration, and glial pathology.Results: CLR01 treatment ameliorated muscle-strength deterioration, anxiety-, and disinhibition-like behavior. Improved phenotype was associated with decreased levels of pathologic tau forms, suggesting that CLR01 exerts a direct effect on tau in vivo. Limitations of the study included a relatively short treatment period of the mice at an age in which full pathology is not yet developed. In addition, high variability in this model lowered the statistical significance of the findings of some outcome measures.Conclusions: The findings suggest that CLR01 is a particularly attractive candidate for the treatment of AD because it targets simultaneously the two major pathogenic proteins instigating and propagating the disease, amyloid β-protein (Aβ) and tau, respectively. In addition, our study suggests that CLR01 can be used for the treatment of other tauopathies in the absence of amyloid pathology.


2020 ◽  
pp. 1-12 ◽  
Author(s):  
Yingxia Liang ◽  
Frank Raven ◽  
Joseph F. Ward ◽  
Sherri Zhen ◽  
Siyi Zhang ◽  
...  

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Rachel E. Lackie ◽  
Jose Marques-Lopes ◽  
Valeriy G. Ostapchenko ◽  
Sarah Good ◽  
Wing-Yiu Choy ◽  
...  

Abstract Molecular chaperones and co-chaperones, which are part of the protein quality control machinery, have been shown to regulate distinct aspects of Alzheimer’s Disease (AD) pathology in multiple ways. Notably, the co-chaperone STI1, which presents increased levels in AD, can protect mammalian neurons from amyloid-β toxicity in vitro and reduced STI1 levels worsen Aβ toxicity in C. elegans. However, whether increased STI1 levels can protect neurons in vivo remains unknown. We determined that overexpression of STI1 and/or Hsp90 protected C. elegans expressing Aβ(3–42) against Aβ-mediated paralysis. Mammalian neurons were also protected by elevated levels of endogenous STI1 in vitro, and this effect was mainly due to extracellular STI1. Surprisingly, in the 5xFAD mouse model of AD, by overexpressing STI1, we find increased amyloid burden, which amplifies neurotoxicity and worsens spatial memory deficits in these mutants. Increased levels of STI1 disturbed the expression of Aβ-regulating enzymes (BACE1 and MMP-2), suggesting potential mechanisms by which amyloid burden is increased in mice. Notably, we observed that STI1 accumulates in dense-core AD plaques in both 5xFAD mice and human brain tissue. Our findings suggest that elevated levels of STI1 contribute to Aβ accumulation, and that STI1 is deposited in AD plaques in mice and humans. We conclude that despite the protective effects of STI1 in C. elegans and in mammalian cultured neurons, in vivo, the predominant effect of elevated STI1 is deleterious in AD.


2016 ◽  
Vol 52 (1) ◽  
pp. 223-242 ◽  
Author(s):  
Patricia R. Spilman ◽  
Veronique Corset ◽  
Olivia Gorostiza ◽  
Karen S. Poksay ◽  
Veronica Galvan ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Fujita ◽  
Kuniyuki Kano ◽  
Shigenobu Kishino ◽  
Toshihiro Nagao ◽  
Xuefeng Shen ◽  
...  

AbstractConjugated linoleic acid (CLA) is an isomer of linoleic acid (LA). The predominant dietary CLA is cis-9, trans-11-CLA (c-9, t-11-CLA), which constitutes up to ~ 90% of total CLA and is thought to be responsible for the positive health benefits associated with CLA. However, the effects of c-9, t-11-CLA on Alzheimer’s disease (AD) remain to be elucidated. In this study, we investigated the effect of dietary intake of c-9, t-11-CLA on the pathogenesis of an AD mouse model. We found that c-9, t-11-CLA diet-fed AD model mice significantly exhibited (1) a decrease in amyloid-β protein (Aβ) levels in the hippocampus, (2) an increase in the number of microglia, and (3) an increase in the number of astrocytes expressing the anti-inflammatory cytokines, interleukin-10 and 19 (IL-10, IL-19), with no change in the total number of astrocytes. In addition, liquid chromatography–tandem mass spectrometry (LC–MS/MS) and gas chromatographic analysis revealed that the levels of lysophosphatidylcholine (LPC) containing c-9, t-11-CLA (CLA-LPC) and free c-9, t-11-CLA were significantly increased in the brain of c-9, t-11-CLA diet-fed mice. Thus, dietary c-9, t-11-CLA entered the brain and appeared to exhibit beneficial effects on AD, including a decrease in Aβ levels and suppression of inflammation.


1996 ◽  
Vol 17 (4) ◽  
pp. S68
Author(s):  
C.B. Eckman ◽  
C.-M. Prada ◽  
A. Fauq ◽  
S.G. Younkin

2001 ◽  
Vol 355 (3) ◽  
pp. 869-877 ◽  
Author(s):  
Dominic M. WALSH ◽  
Dean M. HARTLEY ◽  
Margaret M. CONDRON ◽  
Dennis J. SELKOE ◽  
David B. TEPLOW

In a Flemish kindred, an Ala692 → Gly amino acid substitution in the amyloid β-protein precursor (AβPP) causes a form of early-onset Alzheimer's disease (AD) which displays prominent amyloid angiopathy and unusually large senile plaque cores. The mechanistic basis of this Flemish form of AD is unknown. Previous in vitro studies of amyloid β-protein (Aβ) production in HEK-293 cells transfected with cDNA encoding Flemish AβPP have shown that full-length [Aβ(1–40)] and truncated [Aβ(5–40) and Aβ(11–40)] forms of Aβ are produced. In an effort to determine how these peptides might contribute to the pathogenesis of the Flemish disease, comparative biophysical and neurotoxicity studies were performed on wild-type and Flemish Aβ(1–40), Aβ(5–40) and Aβ(11–40). The results revealed that the Flemish amino acid substitution increased the solubility of each form of peptide, decreased the rate of formation of thioflavin-T-positive assemblies, and increased the SDS-stability of peptide oligomers. Although the kinetics of peptide assembly were altered by the Ala21 → Gly substitution, all three Flemish variants formed fibrils, as did the wild-type peptides. Importantly, toxicity studies using cultured primary rat cortical cells showed that the Flemish assemblies were as potent a neurotoxin as were the wild-type assemblies. Our results are consistent with a pathogenetic process in which conformational changes in Aβ induced by the Ala21 → Gly substitution would facilitate peptide adherence to the vascular endothelium, creating nidi for amyloid growth. Increased peptide solubility and assembly stability would favour formation of larger deposits and inhibit their elimination. In addition, increased concentrations of neurotoxic assemblies would accelerate neuronal injury and death.


Peptides ◽  
2002 ◽  
Vol 23 (12) ◽  
pp. 2223-2226 ◽  
Author(s):  
William A. Banks ◽  
Brie Terrell ◽  
Susan A. Farr ◽  
Sandra M. Robinson ◽  
Naoko Nonaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document