scholarly journals Melatonin promotes bone marrow mesenchymal stem cell osteogenic differentiation and prevents osteoporosis development through modulating circ_0003865 that sponges miR-3653-3p

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xudong Wang ◽  
Taiqiu Chen ◽  
Zhihuai Deng ◽  
Wenjie Gao ◽  
Tongzhou Liang ◽  
...  

Abstract Background Little is known about the implications of circRNAs in the effects of melatonin (MEL) on bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation and osteoporosis (OP) progression. The aim of our study was to investigate circRNAs in MEL-regulated BMSC differentiation and OP progression. Methods BMSC osteogenic differentiation was measured by qRT-PCR, western blot (WB), Alizarin Red, and alkaline phosphatase (ALP) staining. Differential circRNA and mRNA profiles of BMSCs treated by MEL were characterized by deep sequencing, followed by validation using RT-PCR, Sanger sequencing, and qRT-PCR. Silencing and overexpression of circ_0003865 were conducted for functional investigations. The sponged microRNAs and targeted mRNAs were predicted by bioinformatics and validated by qRT-PCR, RNA pull-down, and dual-luciferase reporter assay. The function of miR-3653-3p and circ_0003865/miR-3653-3p/growth arrest-specific gene 1 (GAS1) cascade was validated for the osteogenic differentiation of BMSCs by CCK-8, qRT-PCR, WB, Alizarin Red, and ALP staining. The effects of circ_0003865 on OP development were tested in murine OP model. Results MEL promoted osteogenic differentiation of BMSCs. RNA sequencing revealed significant alterations in circRNA and mRNA profiles associated with multiple biological processes and signaling pathways. Circ_0003865 expression in BMSCs was significantly decreased by MEL treatment. Silencing of circ_0003865 had no effect on proliferation while promoted osteogenic differentiation of BMSCs. Overexpression of circ_0003865 abrogated the promotion of BMSC osteogenic differentiation induced by MEL, but proliferation of BMSCs induced by MEL had no change whether circ_0003865 was overexpression or not. Furthermore, circ_0003865 sponged miR-3653-3p to promote GAS1 expression in BMSCs. BMSC osteogenic differentiation was enhanced by miR-3653-3p overexpression while BMSC proliferation was not affected. By contrast, miR-3653-3p silencing mitigated the promoted BMSC osteogenic differentiation caused by circ_0003865 silencing, but had no effect on proliferation. Finally, circ_0003865 silencing repressed OP development in mouse model. Conclusion MEL promotes BMSC osteogenic differentiation and inhibits OP pathogenesis by suppressing the expression of circ_0003865, which regulates GAS1 gene expression via sponging miR-3653-3p.

2020 ◽  
Author(s):  
Xudong Wang ◽  
Taiqiu Chen ◽  
Zhihuai Deng ◽  
Wenjie Gao ◽  
Tongzhou Liang ◽  
...  

Abstract Background: To investigate circRNAs in Melatonin (MEL)-regulated bone marrow mesenchymal stem cell (BMSC) differentiation and osteoporosis.Methods: BMSC osteogenic differentiation was measured by qRT-PCR, western blot (WB), Alizarin Red and alkaline phosphatase (ALP) staining. Differential circRNA and mRNA profiles of BMSCs treated by MEL were characterized by deep sequencing, followed by validation using RT-PCR, Sanger sequencing, and qRT-PCR. Silencing and overexpression of circ_0003865 were conducted for functional investigations. The sponged microRNAs and targeted mRNAs were predicted by bioinformatics and validated by qRT-PCR, RNA pull-down, and dual-luciferase reporter assay. The function of miR-3653-3p and circ_0003865/miR-3653-3p/growth arrest-specific gene 1 (GAS1) cascade were validated for the osteogenic differentiation of BMSCs by qRT-PCR, WB, Alizarin Red, and ALP staining. The effects of circ_0003865 on osteoporosis (OP) development was tested in murine osteoporosis model.Results: MEL promoted osteogenic differentiation of BMSCs. RNA sequencing revealed significant alterations in circRNA and mRNA profiles associated with multiple biological processes and signaling pathways. Circ_0003865 expression in BMSCs was significantly decreased by MEL treatment. Silencing of circ_0003865 promoted osteogenic differentiation of BMSCs. Overexpression of circ_0003865 abrogated the promotion of BMSCs osteogenic differentiation induced by MEL. Furthermore, circ_0003865 sponged miR-3653-3p to promote GAS1 expression in BMSCs. BMSC osteogenic differentiation was enhanced by miR-3653-3p overexpression. By contrast, miR-3653-3p silencing mitigated the promoted BMSC osteogenic differentiation caused by circ_0003865 silencing. Finally, circ_0003865 silencing repressed OP development in mouse model.Conclusion: MEL promotes BMSC osteogenic differentiation and inhibits osteoporosis pathogenesis by suppressing the expression of circ_0003865, which regulates GAS1 gene expression via sponging miR-3653-3p.


2020 ◽  
Author(s):  
Xudong Wang ◽  
Taiqiu Chen ◽  
Zhihuai Deng ◽  
Wenjie Gao ◽  
Tongzhou Liang ◽  
...  

Abstract Background: Little is known about the implications of circRNAs in the effects of Melatonin (MEL) on bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation and osteoporosis progression.The aim of our study was to investigate circRNAs in MEL-regulated BMSCs differentiation and osteoporosis progression.Methods: BMSCs osteogenic differentiation was measured by qRT-PCR, western blot (WB), Alizarin Red and alkaline phosphatase (ALP) staining. Differential circRNA and mRNA profiles of BMSCs treated by MEL were characterized by deep sequencing, followed by validation using RT-PCR, Sanger sequencing, and qRT-PCR. Silencing and overexpression of circ_0003865 were conducted for functional investigations. The sponged microRNAs and targeted mRNAs were predicted by bioinformatics and validated by qRT-PCR, RNA pull-down, and dual-luciferase reporter assay. The function of miR-3653-3p and circ_0003865/miR-3653-3p/growth arrest-specific gene 1 (GAS1) cascade were validated for the osteogenic differentiation of BMSCs by CCK-8, qRT-PCR, WB, Alizarin Red, and ALP staining. The effects of circ_0003865 on osteoporosis (OP) development was tested in murine osteoporosis model.Results: MEL promoted osteogenic differentiation of BMSCs. RNA sequencing revealed significant alterations in circRNA and mRNA profiles associated with multiple biological processes and signaling pathways. Circ_0003865 expression in BMSCs was significantly decreased by MEL treatment. Silencing of circ_0003865 had no effect on proliferation while promoted osteogenic differentiation of BMSCs. Overexpression of circ_0003865 abrogated the promotion of BMSCs osteogenic differentiation induced by MEL, but proliferation of BMSCs induced by MEL had no change whether circ_0003865 was overexpression or not. Furthermore, circ_0003865 sponged miR-3653-3p to promote GAS1 expression in BMSCs. BMSCs osteogenic differentiation was enhanced by miR-3653-3p overexpression while BMSCs proliferation was not affected. By contrast, miR-3653-3p silencing mitigated the promoted BMSCs osteogenic differentiation caused by circ_0003865 silencing, but had no effect on proliferation. Finally, circ_0003865 silencing repressed OP development in mouse model.Conclusion: MEL promotes BMSCs osteogenic differentiation and inhibits osteoporosis pathogenesis by suppressing the expression of circ_0003865, which regulates GAS1 gene expression via sponging miR-3653-3p.


2020 ◽  
Vol 7 ◽  
Author(s):  
Yikun Jiang ◽  
Jun Zhang ◽  
Zhengwei Li ◽  
Guoliang Jia

Recent evidence has demonstrated that mesenchymal stem cells (MSCs) can release a large number of functionally specific microRNA (miRNA) microvesicles that play a role in promoting osteogenic differentiation, but the specific mechanism is not yet clear. Under such context, this study aims to elucidate the mechanism of bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exo) promoting fracture healing in mice. We isolated and identified the BMSC-Exo. Bioinformatics analysis predicted high expression of miRNA in exosomes and verified the transfer of miR-25 in exosomes by immunofluorescence. Targeting relationship between miR-25 and Smad ubiquitination regulatory factor-1 (SMURF1) was predicted and verified by dual-luciferase reporter gene assay. Immunoprecipitation and protein stability assays were used to detect Runt-related transcription factor 2 (Runx2) ubiquitination and the effect of SMURF1 on Runx2 ubiquitination, respectively. The effect of miR-25 in BMSC-Exo on fracture healing in mice was assessed using X-ray imaging. alkaline phosphatase, alizarin red staining, EdU, CCK-8, and Transwell were used to evaluate the effects of exosomes transferred miR-25 on osteogenic differentiation, proliferation, and migration of osteoblasts. Bioinformatics analysis predicted that miR-25 expression in exosomes increased significantly. Moreover, the targeted regulation of SMURF1 by miR-25 was verified. SMURF1 inhibited Runx2 protein expression by promoting ubiquitination degradation of Runx2. Notably, miR-25 secreted by BMSC-Exo can accelerate osteogenic differentiation, proliferation, and migration of osteoblasts through SMURF1/Runx2 axis. Our results demonstrate that miR-25 in BMSC-Exo regulates the ubiquitination degradation of Runx2 by SMURF1 to promote fracture healing in mice.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Bo Sun ◽  
Yujia Ma ◽  
Fang Wang ◽  
Linli Hu ◽  
Yingpu Sun

Abstract Background This article aims to reveal the therapeutic effects and potential mechanisms of bone mesenchymal stem cell (BMSC)-derived exosomes on premature ovarian failure (POF). Methods Exosomes were collected from BMSCs and were used to treat cisplatin-induced POF mouse models. Pathological changes of ovarian tissue were detected by using HE staining and by Western blot that detected the expression of apoptosis-related proteins. In cisplatin-induced primary granulosa cell injury, exosomes were co-cultured with the granulosa cells. The apoptosis or viability of granulosa cells was analyzed by flow cytometry or MTT, respectively. In Target scan and microT-CDS databases, an intersection of miRNAs targeting to p53 was found. The expressions of miRNAs in BMSC-derived exosomes were detected by qRT-PCR. Besides, miR-664-5p targeted to p53 of cells was verified by dual-luciferase reporter assay. Results BMSC-derived exosomes improved the follicular morphology of POF mice and inhibited the expression of apoptosis-related protein. By co-culture of exosomes and primary granulosa cells, BMSC-derived exosomes repressed cisplatin-induced granulosa cells apoptosis and increased cells viability, while these effects were abrogated after the exosome-containing RNA was degraded by RNase. By Target scan, microT-CDS and qRT-PCR, miR-664-5p was regarded as the dominated RNA in BMSC-derived exosomes. By dual-luciferase reporter assay, miR-664-5p negatively regulated p53 luciferase activity. After shRNA interfering miR-664-5p of BMSC, BMSC-derived exosomes exerted no protective effect on cisplatin-induced granulosa cell apoptosis. Conclusion Our results indicated that miR-644-5p carried by BMSC-derived exosomes inhibited the apoptosis of ovarian granulosa cell by targeting p53 of cells, suggesting that miR-644-5p had the potential to treat POF and restore ovarian function.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Xin-Gang Pang ◽  
Yu Cong ◽  
Ni-Rong Bao ◽  
Yong-Gang Li ◽  
Jian-Ning Zhao

Objectives. The present study aimed to investigate the overall effect of quercetin on mouse bone marrow mesenchymal stem cell (BMSC) proliferation and osteogenic differentiation in vitro. Materials and Methods. BMSCs were treated with different concentrations of quercetin for 6 days. The effects of quercetin on cell proliferation were assessed at predetermined times using Cell Counting Kit-8 (CCK-8) assay. The cells were then treated with quercetin, estrogen, or an estrogen receptor (ER) antagonist (which was also administered in the presence of quercetin or estrogen) for 7 or 21 days. The effects of quercetin on BMSC osteogenic differentiation were analyzed by an alkaline phosphatase (ALP) assay kit, Alizarin Red S staining (ARS), quantitative real-time PCR (qPCR), and western blotting. Results. The CCK-8 and ALP assays and ARS staining showed that quercetin significantly enhanced BMSC proliferation, ALP activity, and extracellular matrix production and mineralization, respectively. The qPCR results indicated that quercetin promoted osterix (OSX), runt-related transcription factor 2 (RUNX2), and osteopontin (OPN) transcription in the presence of osteoinduction medium, and the western blotting results indicated that quercetin enhanced bone morphogenetic protein 2 (BMP2), Smad1, Smad4, RUNX2, OSX, and OPN expression and Smad1 phosphorylation. Treatment with the ER inhibitor ICI182780 blocked the effects of quercetin. Conclusions. Our data demonstrated that quercetin promotes BMSC proliferation and osteogenic differentiation. Quercetin enhances BMP signaling pathway activation and upregulates the expression of downstream genes, such as OSX, RUNX2, and OPN, via the ER.


2021 ◽  
Vol 11 (5) ◽  
pp. 957-962
Author(s):  
Ainiwaerjiang Damaola ◽  
Maerdan Aierken ◽  
Mieralimu Muertizha ◽  
Abudouaini Abudoureheman ◽  
Haishan Lin ◽  
...  

We aimed to explore the effects of rat bone marrow mesenchymal stem cells (BMSCs) on osteogenic differentiation via analyzing miR-3148 expression in patients with osteoporosis. Realtime quantitative PCR was conducted for assessing microRNA-3148 expression. BMSCs from SD rats were transfected with microRNA-3148 mimics and microRNA-3148 inhibitor via liposomal trans-fection method utilizing Lipo2000, followed by analysis of microRNA-3148 level. After 10-days of osteogenic differentiation induction, alkaline phosphatase (ALP) staining and alizarin red (ARS) staining were done to investigate the osteogenic differentiation potential. Simultaneously, qRT-PCR measured the expression of osteogenesis marker genes (BMP and Runx2) in each group. qRT-PCR analysis revealed a high expression of miR-3148 in the bone tissue and the serum samples from patients with osteoporosis in comparison with healthy individuals. In addition, miRNA-3148 mimics could retard the osteogenic differentiation of BMSCs, while microRNA-3148 inhibitor could prompt the procedure. MicroRNA-3148 was highly expressed in the skeletal tissues and the serum samples from patients with osteoporosis and it could restrain the differentiation of BMSCs into osteoblasts, suggesting that it might be a novel therapeutic target for treating osteoporosis.


2017 ◽  
Vol 32 (7) ◽  
pp. 906-919 ◽  
Author(s):  
Dhanak Gupta ◽  
David M Grant ◽  
Kazi M Zakir Hossain ◽  
Ifty Ahmed ◽  
Virginie Sottile

Sign in / Sign up

Export Citation Format

Share Document