scholarly journals Targeted gene correction and functional recovery in achondroplasia patient-derived iPSCs

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Huan Zou ◽  
Mingfeng Guan ◽  
Yundong Li ◽  
Fang Luo ◽  
Wenyuan Wang ◽  
...  

Abstract Background Achondroplasia (ACH) is the most common genetic form of dwarfism and belongs to dominant monogenic disorder caused by a gain-of-function point mutation in the transmembrane region of FGFR3. There are no effective treatments for ACH. Stem cells and gene-editing technology provide us with effective methods and ideas for ACH research and treatment. Methods We generated non-integrated iPSCs from an ACH girl’s skin and an ACH boy’s urine by Sendai virus. The mutation of ACH iPSCs was precisely corrected by CRISPR-Cas9. Results Chondrogenic differentiation ability of ACH iPSCs was confined compared with that of healthy iPSCs. Chondrogenic differentiation ability of corrected ACH iPSCs could be restored. These corrected iPSCs displayed pluripotency, maintained normal karyotype, and demonstrated none of off-target indels. Conclusions This study may provide an important theoretical and experimental basis for the ACH research and treatment.

2019 ◽  
Author(s):  
Huan Zou ◽  
Mingfeng Guan ◽  
Yundong Li ◽  
Fang Luo ◽  
Wenyuan Wang ◽  
...  

AbstractAchondroplasia (ACH) is the most common genetic form of dwarfism and belongs to dominant monogenic disorder caused by a gain-of-function point mutation in the transmembrane region ofFGFR3.Stem cells and gene-editing technology provide us with effective methods and ideas for ACH research and treatment. Here we generated non-integrated iPSCs from an ACH girl’s skin and an ACH boy’s urine. We found that the chondrogenic differentiation ability of ACH iPSCs was confined compared with that of healthy iPSCs. When the mutation of ACH iPSCs was precisely corrected by CRISPR-Cas9, their chondrogenic differentiation ability could be restored. Furthermore, these corrected iPSCs displayed pluripotency, maintained normal karyotype, and demonstrated none of off-target indels. Our study may provide an important theoretical and experimental basis for the ACH research and treatment.


2016 ◽  
Vol 3 ◽  
pp. 16057 ◽  
Author(s):  
Arnold Park ◽  
Patrick Hong ◽  
Sohui T Won ◽  
Patricia A Thibault ◽  
Frederic Vigant ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1861-1861
Author(s):  
Byoungyong Yoo ◽  
So Hyun Julie Park Park ◽  
Yankai Zhang ◽  
Vivien A. Sheehan ◽  
Gang Bao

Abstract Introduction: Sickle cell disease (SCD) is a red blood cell disorder caused by a single nucleotide mutation in the β-globin gene (HBB). Allogeneic hematopoietic stem cell transplantation (HSCT) is the only available cure, but is available to only a minority of patients and can be associated with high morbidity and mortality. CRISPR/Cas9 mediated genome editing may provide a permanent cure for SCD patients by correcting the sickle mutation in HBB in hematopoietic stem and progenitor cells (HSPCs). Previously, we achieved ~39% sickle mutation correction in SCD HSPCs by delivering S. pyogenes (Spy) Cas9/R-66S gRNA as ribonucleoprotein (RNP) and single-stranded oligodeoxynucleotides (ssODN) corrective donor template. S. aureus (Sau) Cas9 has potentially advantageous properties to improve therapeutic gene editing efficiency and safety, including smaller size allowing for efficient in vivo delivery and longer Protospacer Adjacent Motif (PAM) sequence for higher specificity. However, although in general, the cutting efficiency of SauCas9 is lower than SpyCas9, the differences in gene correction and other gene-editing outcomes between SpyCas9 and SauCas9 have not been well studied. Methods: With our R-66S gRNA sequence targeting the sickle mutation, the PAM sequence of SauCas9 (NGGRRT) is mutually permissive with that of SpyCas9 (NGG), allowing the same sequence to be targeted by both Cas9 nucleases. We delivered R-66S gRNA with SpyCas9 and SauCas9 respectively as RNP, along with corrective ssODN donor template into SCD HSPCs. We analyzed sickle mutation correction rate and small insertions and deletions (INDELs) profile by Next Generation Sequencing (NGS). Results/discussions: We found that although the INDEL rate of SpyCas9 is higher than SauCas9 at the same molar concentration of RNP, SauCas9 gave 43% sickle mutation correction, slightly higher than SpyCas9 (39%), demonstrating efficient homology-directed repair (HDR) mediated gene correction by SauCas9. To further investigate the potential for clinical translation, we will perform in-depth efficiency and safety characterization comparing SauCas9 and SpyCas9 mediated sickle mutation correction therapy in SCD HSPCs. Conclusion: In this work, we showed that, compared with the highly-optimized and widely-used SpyCas9, SauCas9 leads to a higher sickle mutation correction in SCD HSPCs, demonstrating the therapeutic potential of SauCas9 for treating SCD. We will further investigate the efficiency and safety of gene-edited therapy mediated by these two Cas9 orthologs, including in-depth characterization of off-target effects, chromosomal rearrangement and aberrations, and large genomic modifications. We will differentiate gene-corrected SCD HSPCs to study erythropoiesis and red cell phenotype, including normal hemoglobin production and reduced sickling under hypoxic conditions. Lastly, we will evaluate the engraftment efficiency of gene-edited cells in Nonirradiated NOD,B6.SCID Il2rγ -/- Kit (W41/W41) (NBSGW) mice that support the engraftment of human hematopoietic stem cells. Disclosures Sheehan: Forma Therapeutics: Research Funding; Beam Therapeutics: Research Funding; Novartis: Research Funding.


Author(s):  
Emily Xia ◽  
Yiqian Zhang ◽  
Huibi Cao ◽  
Jun Li ◽  
Rongqi Duan ◽  
...  

Cystic Fibrosis (CF) is an inherited monogenic disorder, amenable to gene based therapies. Because CF lung disease is currently the major cause of mortality and morbidity, and lung airway is readily accessible to gene delivery, the major CF gene therapy effort at present is directed to the lung. Although airway epithelial cells are renewed slowly, permanent gene correction through gene editing or targeting in airway stem cells is needed to perpetuate the therapeutic effect. Transcription activator-like effector nuclease (TALEN) has been utilized widely for a variety of gene editing applications. The stringent requirement for nuclease binding target sites allows for gene editing with precision. In this study, we engineered helper-dependent adenoviral (HD-Ad) vectors to deliver a pair of TALENs together with donor DNA targeting the human AAVS1 locus. With homology arms of 4 kb in length, we demonstrated precise insertion of either a LacZ reporter gene or a human CFTR minigene into the target site. Using the LacZ reporter, we determined the efficiency of gene integration to be about 5%. In the CFTR vector transduced cells, we have detected both CFTR mRNA and protein expression by qPCR and Wetern analysis, respectively. We have also confirmed CFTR function correction by flurometric Image Plate Reader (FLIPR) and iodide efflux assays. Taking together, these findings suggest a new direction for future in vitro and in vivo studies in CF gene editing.


2018 ◽  
Vol 25 (8) ◽  
pp. T141-T158
Author(s):  
Zi Ying Tan ◽  
Taosheng Huang ◽  
Joanne Ngeow

Hereditary cancer predisposition syndromes are associated with germline mutations that lead to increased vulnerability for an individual to develop cancers. Such germline mutations in tumour suppressor genes, oncogenes and genes encoding for proteins essential in DNA repair pathways and cell cycle control can cause overall chromosomal instability in the genome and increase risk in developing cancers. Gene correction of these germline mutations to restore normal protein functions is anticipated as a new therapeutic option. This can be achieved through disruption of gain-of-function pathogenic mutation, restoration of loss-of-function mutation, addition of a transgene essential for cell function and single nucleotide changes. Genome editing tools are applicable to precise gene correction. Development of genome editing tools comes in two waves. The first wave focuses on improving targeting specificity and editing efficiency of nucleases, and the second wave of gene editing draws on innovative engineering of fusion proteins combining deactivated nucleases and other enzymes that are able to create limitless functional molecular tools. This gene editing advancement is going to impact medicine, particularly in hereditary cancers. In this review, we discuss the application of gene editing as an early intervention and possible treatment for hereditary cancers, by highlighting a selection of highly penetrant cancer syndromes as examples of how this may be achieved in clinical practice.


2020 ◽  
Vol 2 ◽  
Author(s):  
Elizabeth K. Benitez ◽  
Anastasia Lomova Kaufman ◽  
Lilibeth Cervantes ◽  
Danielle N. Clark ◽  
Paul G. Ayoub ◽  
...  

Monogenic disorders of the blood system have the potential to be treated by autologous stem cell transplantation of ex vivo genetically modified hematopoietic stem and progenitor cells (HSPCs). The sgRNA/Cas9 system allows for precise modification of the genome at single nucleotide resolution. However, the system is reliant on endogenous cellular DNA repair mechanisms to mend a Cas9-induced double stranded break (DSB), either by the non-homologous end joining (NHEJ) pathway or by the cell-cycle regulated homology-directed repair (HDR) pathway. Here, we describe a panel of ectopically expressed DNA repair factors and Cas9 variants assessed for their ability to promote gene correction by HDR or inhibit gene disruption by NHEJ at the HBB locus. Although transient global overexpression of DNA repair factors did not improve the frequency of gene correction in primary HSPCs, localization of factors to the DSB by fusion to the Cas9 protein did alter repair outcomes toward microhomology-mediated end joining (MMEJ) repair, an HDR event. This strategy may be useful when predictable gene editing outcomes are imperative for therapeutic success.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Toshio Miki ◽  
Ludivina Vazquez ◽  
Lisa Yanuaria ◽  
Omar Lopez ◽  
Irving M. Garcia ◽  
...  

Mucopolysaccharidosis type 1 (MPS-1), also known as Hurler’s disease, is a congenital metabolic disorder caused by a mutation in the alpha-L-iduronidase (IDUA) gene, which results in the loss of lysosomal enzyme function for the degradation of glycosaminoglycans. Here, we demonstrate the proof of concept of ex vivo gene editing therapy using induced pluripotent stem cell (iPSC) and CRISPR/Cas9 technologies with MPS-1 model mouse cell. Disease-affected iPSCs were generated from Idua knockout mouse embryonic fibroblasts, which carry a disrupting neomycin-resistant gene cassette (Neor) in exon VI of the Idua gene. Double guide RNAs were used to remove the Neor sequence, and various lengths of donor templates were used to reconstruct the exon VI sequence. A quantitative PCR-based screening method was used to identify Neor removal. The sequence restoration without any indel mutation was further confirmed by Sanger sequencing. After induced fibroblast differentiation, the gene-corrected iPSC-derived fibroblasts demonstrated Idua function equivalent to the wild-type iPSC-derived fibroblasts. The Idua-deficient cells were competent to be reprogrammed to iPSCs, and pluripotency was maintained through CRISPR/CAS9-mediated gene correction. These results support the concept of ex vivo gene editing therapy using iPSC and CRISPR/Cas9 technologies for MPS-1 patients.


2019 ◽  
Vol 5 (3) ◽  
pp. eaav4324 ◽  
Author(s):  
Yi-Li Min ◽  
Hui Li ◽  
Cristina Rodriguez-Caycedo ◽  
Alex A. Mireault ◽  
Jian Huang ◽  
...  

Mutations in the dystrophin gene cause Duchenne muscular dystrophy (DMD), which is characterized by lethal degeneration of cardiac and skeletal muscles. Mutations that delete exon 44 of the dystrophin gene represent one of the most common causes of DMD and can be corrected in ~12% of patients by editing surrounding exons, which restores the dystrophin open reading frame. Here, we present a simple and efficient strategy for correction of exon 44 deletion mutations by CRISPR-Cas9 gene editing in cardiomyocytes obtained from patient-derived induced pluripotent stem cells and in a new mouse model harboring the same deletion mutation. Using AAV9 encoding Cas9 and single guide RNAs, we also demonstrate the importance of the dosages of these gene editing components for optimal gene correction in vivo. Our findings represent a significant step toward possible clinical application of gene editing for correction of DMD.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2192-2192
Author(s):  
So Hyun Park ◽  
Ciaran M Lee ◽  
Daniel P. Dever ◽  
Timothy H Davis ◽  
Joab Camarena ◽  
...  

Abstract Sickle cell disease (SCD) is an inherited blood disorder associated with a debilitating chronic illness. SCD is caused by a point mutation in the β-globin gene (HBB). A single nucleotide substitution converts glutamic acid to a valine that leads to the production of sickle hemoglobin (HbS), which impairs the function of red blood cells. Here we show that delivery of Streptococcus pyogenes (Sp) Cas9 protein and CRISPR guide RNA as a ribonucleoprotein complex (RNP) together with a short single-stranded DNA donor (ssODN) template into CD34+ hematopoietic stem and progenitor cells (HSPCs) from SCD patients' bone marrow (BM) was able to correct the sickling HBB mutation, with up to 33% homology directed repair (HDR) without selection. Further, CRISPR/Cas9 cutting of HBB in SCD HSPCs induced gene conversion between the HBB sequences in the vicinity of the target locus and the homologous region in δ-globin gene (HBD), with up to 4.4% additional gene correction mediated by the HBD conversion in cells with Cas9 cutting only. The erythrocytes derived from gene-edited cells showed a marked reduction of the HbS level, increased expression of normal adult hemoglobin (HbA), and a complete loss of cell sickling, demonstrating the potential in curing SCD. We performed extensive off-target analysis of gene-edited SCD HSPCs using the in-silico prediction tool COSMID and unbiased, genome-wide assay Guide-Seq, revealing a gross intrachromosomal rearrangement event between the on- and off-target Cas9 cutting sites. We used a droplet digital PCR assay to quantify deletion and inversion events from Day 2 to Day 12 after RNP delivery, and found that large chromosomal deletion decreased from 1.8% to 0.2%, while chromosomal inversion maintained at 3.3%. We demonstrated that the use of high-fidelity SpCas9 (HiFi Cas9 by IDT) significantly reduced off-target effects and completely eliminated the intrachromosome rearrangement events, while maintaining the same level of on-target gene editing, leading to high-efficiency gene correction with increased specificity. In order to determine if gene-corrected SCD HSPCs retain the ability to engraft, CD34+ cells from the BM of SCD patients were treated with Cas9/gRNA RNP and ssODN donor for HBB gene correction, cryopreserved at Day 2 post genome editing, then intravenously transplanted into NSG mice shortly after thawing. These mice were euthanized at Week 16 after transplantation, and the BM was harvested to determine the engraftment potential. An average of 7.5 ±5.4% of cells were double positive for HLA and hCD45 in mice injected with gene-edited CD34+ cells, compared to 16.8 ±9.3% with control CD34+ cells, indicating a good level of engraftment of gene-corrected SCD HSPCs. A higher fraction of human cells were positive for CD19 (66 ±28%), demonstrating lymphoid lineage bias. DNA was extracted from unsorted cells, CD19 or CD33 sorted cells for gene-editing analysis; the HBB editing rates were respectively 29.8% HDR, 2.4% HBD conversion, and 42.8% non-homologous end joining (NHEJ) pretransplantation, and editing rates at Week 16 posttransplantation were respectively 8.8 ±12% HDR, 1.8 ±1.7% HBD conversion, and 24.5 ±12% NHEJ. The highly variable editing rate and indel diversity in gene-edited cells at Week 16 in all four transplanted mice suggest clonal dominance of a limited number of HSPCs after transplantation. Taken together, our results demonstrate highly efficient gene and phenotype correction of the sickling mutation in BM HSPCs from SCD patients mediated by HDR and HBD conversion, and the ability of gene-edited SCD HSPCs to engraft in vivo. We also demonstrate the importance of genome-wide analysis for off-target analysis and the use of HiFi Cas9. Our results provide further evidence for the potential of moving genome editing-based SCD treatment into clinical practice. Acknowledgments: This work was supported by the Cancer Prevention and Research Institute of Texas grants RR140081 and RP170721 (to G. B.), and the National Heart, Lung and Blood Institute of NIH (1K08DK110448 to V.S.) Disclosures Porteus: CRISPR Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees.


2019 ◽  
Author(s):  
Puhao Xiao ◽  
Raoxian Bai ◽  
Ting Zhang ◽  
Yin Zhou ◽  
Zhigang Zhou ◽  
...  

AbstractThe CRISPR-mediated Cas system is the most widely used tool in gene editing and gene therapy for its convenience and efficiency. Delivery of the CRISPR system by adeno-associated viruses (AAVs) is currently the most promising approach to gene therapy. However, pre-existing adaptive immune responses against CRISPR nuclease (PAIR-C) and AAVs has been found in human serum, indicating that immune response is a problem that cannot be ignored, especially for in vivo gene correction. Non-human primates (NHPs) share many genetic and physiological traits with human, and are considered as the bridge for translational medicine. However, whether NHPs have same PAIR-C status with human is still unknown. Here, macaques (rhesus and cynomolgus), including normal housed and CRISPR-SpCas9 or TALENs edited individuals, were used to detect PAIR-C which covered SaCas9, SpCas9, AsCas12a and LbCas12a. Dogs and mice were also detected to expand the range of species. In addition, pre-existing adaptive antibodies to AAV8 and AAV9 were performed against macaques of different ages. The results showed that adaptive immunity was pre-existing in the macaques regardless of Cas proteins and AAVs. These findings indicate that the pre-existing adaptive immune of AAV-delivered CRISPR construction and correction system should be concerned for in vivo experiments.


Sign in / Sign up

Export Citation Format

Share Document