idua gene
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 18)

H-INDEX

5
(FIVE YEARS 2)

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 129
Author(s):  
Concetta De Filippis ◽  
Barbara Napoli ◽  
Laura Rigon ◽  
Giulia Guarato ◽  
Reinhard Bauer ◽  
...  

Deficit of the IDUA (α-L-iduronidase) enzyme causes the lysosomal storage disorder mucopolysaccharidosis type I (MPS I), a rare pediatric neurometabolic disease, due to pathological variants in the IDUA gene and is characterized by the accumulation of the undegraded mucopolysaccharides heparan sulfate and dermatan sulfate into lysosomes, with secondary cellular consequences that are still mostly unclarified. Here, we report a new fruit fly RNAi-mediated knockdown model of a IDUA homolog (D-idua) displaying a phenotype mimicking some typical molecular features of Lysosomal Storage Disorders (LSD). In this study, we showed that D-idua is a vital gene in Drosophila and that ubiquitous reduction of its expression leads to lethality during the pupal stage, when the precise degradation/synthesis of macromolecules, together with a functional autophagic pathway, are indispensable for the correct development to the adult stage. Tissue-specific analysis of the D-idua model showed an increase in the number and size of lysosomes in the brain and muscle. Moreover, the incorrect acidification of lysosomes led to dysfunctional lysosome-autophagosome fusion and the consequent block of autophagy flux. A concomitant metabolic drift of glycolysis and lipogenesis pathways was observed. After starvation, D-idua larvae showed a quite complete rescue of both autophagy/lysosome phenotypes and metabolic alterations. Metabolism and autophagy are strictly interconnected vital processes that contribute to maintain homeostatic control of energy balance, and little is known about this regulation in LSDs. Our results provide new starting points for future investigations on the disease’s pathogenic mechanisms and possible pharmacological manipulations.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1162
Author(s):  
Ngoc Thi Bich Can ◽  
Dien Minh Tran ◽  
Thao Phuong Bui ◽  
Khanh Ngoc Nguyen ◽  
Hoang Huy Nguyen ◽  
...  

Mucopolysaccharidosis type I (MPS I) is a rare autosomal recessive disorder caused by deleterious mutations in the α‑L‑iduronidase (IDUA) gene. Until now, MPS I in Vietnamese has been poorly addressed. Five MPS I patients were studied with direct DNA sequencing using Illumina technology confirming pathogenic variants in the IDUA gene. Clinical characteristics, additional laboratory results, and family history were collected. All patients have presented with the classical characteristic of MPS I, and α‑L‑iduronidase activity was low with the accumulation of glycosaminoglycans. Three variants in the IDUA gene (c.1190‑10C>A (Intronic), c.1046A>G (p.Asp349Gly), c.1862G>C (p.Arg621Pro) were identified. The c.1190‑10C>A variant represents six of the ten disease alleles, indicating a founder effect for MPS I in the Vietnamese population. Using biochemical and genetic analyses, the precise incidence of MPS I in this population should accelerate early diagnosis, newborn screening, prognosis, and optimal treatment


2021 ◽  
Vol 8 ◽  
Author(s):  
Pâmella Borges ◽  
Gabriela Pasqualim ◽  
Ursula Matte

Mucopolysaccharidosis type I (MPS I) is an autosomal recessive disease characterized by the deficiency of alpha-L-iduronidase (IDUA), an enzyme involved in glycosaminoglycan degradation. More than 200 disease-causing variants have been reported and characterized in the IDUA gene. It also has several variants of unknown significance (VUS) and literature conflicting interpretations of pathogenicity. This study evaluated 586 variants obtained from the literature review, five population databases, in addition to dbSNP, Human Genome Mutation Database (HGMD), and ClinVar. For the variants described in the literature, two datasets were created based on the strength of the criteria. The stricter criteria subset had 108 variants with expression study, analysis of healthy controls, and/or complete gene sequence. The less stringent criteria subset had additional 52 variants found in the literature review, HGMD or ClinVar, and dbSNP with an allele frequency higher than 0.001. The other 426 variants were considered VUS. The two strength criteria datasets were used to evaluate 33 programs plus a conservation score. BayesDel (addAF and noAF), PON-P2 (genome and protein), and ClinPred algorithms showed the best sensitivity, specificity, accuracy, and kappa value for both criteria subsets. The VUS were evaluated with these five algorithms. Based on the results, 122 variants had total consensus among the five predictors, with 57 classified as predicted deleterious and 65 as predicted neutral. For variants not included in PON-P2, 88 variants were considered deleterious and 92 neutral by all other predictors. The remaining 124 did not obtain a consensus among predictors.


Author(s):  
nuha alzaabi ◽  
muneera sirajum ◽  
Mohd Zaki Al-Wawi ◽  
Mohammed Alsuwaiji

The IDUA gene (MIM 252800) provides instructions for producing alpha-L-iduronidase, which is essential for the breakdown of glycosaminoglycans (GAGs). Mutations in the IDUA gene have been found to cause mucopolysaccharidosis type I (MIM 607014). This leads to the accumulation of GAGs within lysosomes causing different organs to be dysfunctional.


2021 ◽  
Vol 21 ◽  
Author(s):  
Michelle Fraga ◽  
Roselena Silvestri Schuh ◽  
Édina Poletto ◽  
Talita Giacomet de Carvalho ◽  
Raqueli Teresinha França ◽  
...  

Background: Mucopolysaccharidosis type I (MPS I) is an inherited disorder caused by α-L-iduronidase (IDUA) deficiency. The available treatments are not effective in improving all signs and symptoms of the disease. Objective: : In the present study, we evaluated the transfection efficiency of repeated intravenous administrations of cationic nanoemulsions associated with the plasmid pIDUA (containing IDUA gene). Methods: Cationic nanoemulsions were composed of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(amino[polyethylene glycol]-2000) (DSPE-PEG), 1,2-dioleoyl-sn-glycero-3-trimethylammonium propane (DOTAP), medium chain triglycerides, glycerol, and water and were prepared by high-pressure homogenization and were repeatedly administered to MPS I mice for IDUA production and gene expression. Results: A significant increase in IDUA expression was observed in all organs analyzed, and IDUA activity tended to increase with repeated administrations when compared to our previous report, when mice received a single administration of the same dose. In addition, GAGs were partially cleared from organs, as assessed through biochemical and histology analyzes. There was no presence of inflammatory infiltrate, necrosis, or signs of increase in apoptosis. Furthermore, immunohistochemistry for CD68 showed reduced presence of macrophage cells in treated than in untreated MPS I mice. Conclusion: These set of results suggest that repeated administrations can improve transfection efficiency of cationic complexes without significant increase in toxicity in the MPS I murine model.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2593
Author(s):  
Silvin Lito ◽  
Adama Sidibe ◽  
Sten Ilmjarv ◽  
Patricie Burda ◽  
Matthias Baumgartner ◽  
...  

Background: Mucopolysaccharidosis type I-Hurler (MPS1-H) is a severe genetic lysosomal storage disorder due to loss-of-function mutations in the IDUA gene. The subsequent complete deficiency of alpha l-iduronidase enzyme is directly responsible of a progressive accumulation of glycosaminoglycans (GAG) in lysosomes which affects the functions of many tissues. Consequently, MPS1 is characterized by systemic symptoms (multiorgan dysfunction) including respiratory and cardiac dysfunctions, skeletal abnormalities and early fatal neurodegeneration. Methods: To understand mechanisms underlying MPS1 neuropathology, we generated induced pluripotent stem cells (iPSC) from a MPS1-H patient with loss-of-function mutations in both IDUA alleles. To avoid variability due to different genetic background of iPSC, we established an isogenic control iPSC line by rescuing IDUA expression by a lentivectoral approach. Results: Marked differences between MPS1-H and IDUA-corrected isogenic controls were observed upon neural differentiation. A scratch assay revealed a strong migration defect of MPS1-H cells. Also, there was a massive impact of IDUA deficiency on gene expression (340 genes with an FDR < 0.05). Conclusions: Our results demonstrate a hitherto unknown connection between lysosomal degradation, gene expression and neural motility, which might account at least in part for the phenotype of MPS1-H patients.


Gene Reports ◽  
2020 ◽  
Vol 21 ◽  
pp. 100798
Author(s):  
Fadoua Bouzid ◽  
Mohamed Said Sebbar ◽  
Abdelhamid El Mousadik ◽  
Najat Alif
Keyword(s):  

2020 ◽  
Vol 18 ◽  
pp. 24-32 ◽  
Author(s):  
Liujiang Song ◽  
Jacquelyn J. Bower ◽  
Telmo Llanga ◽  
Jacklyn H. Salmon ◽  
Matthew L. Hirsch ◽  
...  

Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 397
Author(s):  
Lena Provoost ◽  
Carlo Siracusa ◽  
Darko Stefanovski ◽  
Yan Che ◽  
Mingyao Li ◽  
...  

Mucopolysaccharidosis I (MPS I) results from a deficiency of a lysosomal enzyme, alpha-L-iduronidase (IDUA). IDUA deficiency leads to glycosaminoglycan (GAG) accumulation resulting in cellular degeneration and multi-organ dysfunction. The primary aims of this pilot study were to determine the feasibility of cognitive testing MPS I affected dogs and to determine their non-social cognitive abilities with and without gene therapy. Fourteen dogs were tested: 5 MPS I untreated, 5 MPS I treated, and 4 clinically normal. The treated group received intrathecal gene therapy as neonates to replace the IDUA gene. Cognitive tests included delayed non-match to position (DNMP), two-object visual discrimination (VD), reversal learning (RL), attention oddity (AO), and two-scent discrimination (SD). Responses were recorded as correct, incorrect, or no response, and analyzed using mixed effect logistic regression analysis. Significant differences were not observed among the three groups for DNMP, VD, RL, or AO. The MPS I untreated dogs were excluded from AO testing due to failing to pass acquisition of the task, potentially representing a learning or executive function deficit. The MPS I affected group (treated and untreated) was significantly more likely to discriminate between scents than the normal group, which may be due to an age effect. The normal group was comprised of the oldest dogs, and a mixed effect logistic model indicated that older dogs were more likely to respond incorrectly on scent discrimination. Overall, this study found that cognition testing of MPS I affected dogs to be feasible. This work provides a framework to refine future cognition studies of dogs affected with diseases, including MPS I, in order to assess therapies in a more comprehensive manner.


Sign in / Sign up

Export Citation Format

Share Document