scholarly journals Molecular differences of adipose-derived mesenchymal stem cells between non-responders and responders in treatment of  transphincteric perianal fistulas

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michaela Tencerova ◽  
Lilli Lundby ◽  
Steen Buntzen ◽  
Stig Norderval ◽  
Helene Tarri Hougaard ◽  
...  

Abstract Background Injection of autologous adipose tissue (AT) has recently been demonstrated to be an effective and safe treatment for anal fistulas. AT mesenchymal stem cells (AT-MSCs) mediate the healing process, but the relationship between molecular characteristics of AT-MSCs of the injected AT and fistula healing has not been adequately studied. Thus we aimed to characterize the molecular and functional properties of AT-MSCs isolated from autologous AT injected as a treatment of cryptogenic high transsphincteric perianal fistulas and correlate these findings to the healing process. Methods 27 patients (age 45 ± 2 years) diagnosed with perianal fistula were enrolled in the study and treated with autologous AT injected around the anal fistula tract. AT-MSCs were isolated for cellular and molecular analyses. The fistula healing was evaluated by MRI scanning after 6 months of treatment. AT-MSC phenotype was compared between responders and non-responders with respect to fistula healing. Results 52% of all patients exhibited clinical healing of the fistulas as evaluated 6 months after last injection. Cultured AT-MSCs in the responder group had a lower short-term proliferation rate and higher osteoblast differentiation potential compared to non-responder AT-MSCs. On the other hand, adipocyte differentiation potential of AT-MSCs was higher in non-responder group. Interestingly, AT-MSCs of responders exhibited lower expression of inflammatory and senescence associated genes such as IL1B, NFKB, CDKN2A, TPB3,TGFB1. Conclusion Our data suggest that cellular quality of the injected AT-MSCs including cell proliferation, differentiation capacity and secretion of proinflammatory molecules may provide a possible mechanism underlying fistula healing. Furthermore, these biomarkers may be useful to predict a positive fistula healing outcome. Trial registration: NTC04834609, Registered 6 April 2021. https://clinicaltrials.gov/ct2/show/NCT04834609

2020 ◽  
Vol 21 (17) ◽  
pp. 6316
Author(s):  
Lucille Capin ◽  
Nacira Abbassi ◽  
Maëlle Lachat ◽  
Marie Calteau ◽  
Cynthia Barratier ◽  
...  

Adipose-derived mesenchymal stem cells (ASCs) are well known for their secretory potential, which confers them useful properties in cell therapy. Nevertheless, this therapeutic potential is reduced after transplantation due to their short survival in the human body and their migration property. This study proposes a method to protect cells during and after injection by encapsulation in microparticles of calcium alginate. Besides, the consequences of encapsulation on ASC proliferation, pluripotential, and secretome were studied. Spherical particles with a mean diameter of 500 µm could be obtained in a reproducible manner with a viability of 70% after 16 days in vitro. Moreover, encapsulation did not alter the proliferative properties of ASCs upon return to culture nor their differentiation potential in adipocytes, chondrocytes, and osteocytes. Concerning their secretome, encapsulated ASCs consistently produced greater amounts of interleukin-6 (IL-6), interleukin-8 (IL-8), and vascular endothelial growth factor (VEGF) compared to monolayer cultures. Encapsulation therefore appears to enrich the secretome with transforming growth factor β1 (TGF-β1) and macrophage inflammatory protein-1β (MIP-1β) not detectable in monolayer cultures. Alginate microparticles seem sufficiently porous to allow diffusion of the cytokines of interest. With all these cytokines playing an important role in wound healing, it appears relevant to investigate the impact of using encapsulated ASCs on the wound healing process.


2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S399-S400
Author(s):  
E Van Praag ◽  
K van Rijn ◽  
M Monraats ◽  
J Stoker ◽  
C Buskens

Abstract Background Surgical closure of high perianal fistulas using the ligation of the intersphincteric fistula tract (LIFT) procedure is increasingly used in Crohn’s disease. Currently, data on MRI findings after the procedure is lacking, while this is the most important modality to assess deep fistula healing. Therefore, we aimed to evaluate pre- and postoperative fistula characteristics on MRI and the relation with clinical outcomes after LIFT procedure. Methods Consecutive Crohn’s patients treated with LIFT between 2007 and 2018 for high perianal fistulas who underwent a baseline and follow-up (FU) MRI were included in this retrospective study. MRI’s were scored by two radiologists according to a composed score based on the original and modified Van Assche scores with the addition of several items (Table 1). Findings at MRI and the relation to clinical healing were described. Results A total of 12 patients were included (4 male, median age 34 years (IQR 28–39)). The FU MRI was performed a median 5.5 months (IQR 2.5–6.0) after the LIFT procedure. At this time eight patients (67%) reached clinical healing, which increased to ten patients (83%) during follow-up. None had a recurrence. Three patients (25%) needed a re-intervention after the FU MRI due to inflammatory masses and/or persisting fistula tracts. At baseline, all patients showed a tract predominantly filled with granulation tissue, which changed to predominantly fibrotic in seven patients (58%) (Figure 1). All clinically responding patients showed a decrease in tract volume and/or hyperintensity (i.e. activity) with an absence of hyperintensity on T1 and T2 in four (33%) patients. Conclusion Clearly decreased fistula activity can be observed on MRI after LIFT surgery in Crohn’s patients. A large proportion of patients develops a fibrotic tract relatively soon after the procedure and shows no clinical recurrences, suggesting a highly effective therapy and prognostic value of MRI.


2019 ◽  
Vol 14 (4) ◽  
pp. 327-336 ◽  
Author(s):  
Carl R. Harrell ◽  
Marina Gazdic ◽  
Crissy Fellabaum ◽  
Nemanja Jovicic ◽  
Valentin Djonov ◽  
...  

Background: Amniotic Fluid Derived Mesenchymal Stem Cells (AF-MSCs) are adult, fibroblast- like, self-renewable, multipotent stem cells. During the last decade, the therapeutic potential of AF-MSCs, based on their huge differentiation capacity and immunomodulatory characteristics, has been extensively explored in animal models of degenerative and inflammatory diseases. Objective: In order to describe molecular mechanisms responsible for the therapeutic effects of AFMSCs, we summarized current knowledge about phenotype, differentiation potential and immunosuppressive properties of AF-MSCs. Methods: An extensive literature review was carried out in March 2018 across several databases (MEDLINE, EMBASE, Google Scholar), from 1990 to present. Keywords used in the selection were: “amniotic fluid derived mesenchymal stem cells”, “cell-therapy”, “degenerative diseases”, “inflammatory diseases”, “regeneration”, “immunosuppression”. Studies that emphasized molecular and cellular mechanisms responsible for AF-MSC-based therapy were analyzed in this review. Results: AF-MSCs have huge differentiation and immunosuppressive potential. AF-MSCs are capable of generating cells of mesodermal origin (chondrocytes, osteocytes and adipocytes), neural cells, hepatocytes, alveolar epithelial cells, insulin-producing cells, cardiomyocytes and germ cells. AF-MSCs, in juxtacrine or paracrine manner, regulate proliferation, activation and effector function of immune cells. Due to their huge differentiation capacity and immunosuppressive characteristic, transplantation of AFMSCs showed beneficent effects in animal models of degenerative and inflammatory diseases of nervous, respiratory, urogenital, cardiovascular and gastrointestinal system. Conclusion: Considering the fact that amniotic fluid is obtained through routine prenatal diagnosis, with minimal invasive procedure and without ethical concerns, AF-MSCs represents a valuable source for cell-based therapy of organ-specific or systemic degenerative and inflammatory diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Watchareewan Rodprasert ◽  
Sirirat Nantavisai ◽  
Koranis Pathanachai ◽  
Prasit Pavasant ◽  
Thanaphum Osathanon ◽  
...  

AbstractThe trend of regenerative therapy for diabetes in human and veterinary practices has conceptually been proven according to the Edmonton protocol and animal models. Establishing an alternative insulin-producing cell (IPC) resource for further clinical application is a challenging task. This study investigated IPC generation from two practical canine mesenchymal stem cells (cMSCs), canine bone marrow-derived MSCs (cBM-MSCs) and canine adipose-derived MSCs (cAD-MSCs). The results illustrated that cBM-MSCs and cAD-MSCs contain distinct pancreatic differentiation potential and require the tailor-made induction protocols. The effective generation of cBM-MSC-derived IPCs needs the integration of genetic and microenvironment manipulation using a hanging-drop culture of PDX1-transfected cBM-MSCs under a three-step pancreatic induction protocol. However, this protocol is resource- and time-consuming. Another study on cAD-MSC-derived IPC generation found that IPC colonies could be obtained by a low attachment culture under the three-step induction protocol. Further, Notch signaling inhibition during pancreatic endoderm/progenitor induction yielded IPC colonies through the trend of glucose-responsive C-peptide secretion. Thus, this study showed that IPCs could be obtained from cBM-MSCs and cAD-MSCs through different induction techniques. Also, further signaling manipulation studies should be conducted to maximize the protocol’s efficiency.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kulisara Marupanthorn ◽  
Chairat Tantrawatpan ◽  
Pakpoom Kheolamai ◽  
Duangrat Tantikanlayaporn ◽  
Sirikul Manochantr

AbstractMesenchymal stem cells (MSCs) are important in regenerative medicine because of their potential for multi-differentiation. Bone marrow, chorion and placenta have all been suggested as potential sources for clinical application. However, the osteogenic differentiation potential of MSCs derived from chorion or placenta is not very efficient. Bone morphogenetic protein-2 (BMP-2) plays an important role in bone development. Its effect on osteogenic augmentation has been addressed in several studies. Recent studies have also shown a relationship between miRNAs and osteogenesis. We hypothesized that miRNAs targeted to Runt-related transcription factor 2 (Runx-2), a major transcription factor of osteogenesis, are responsible for regulating the differentiation of MSCs into osteoblasts. This study examines the effect of BMP-2 on the osteogenic differentiation of MSCs isolated from chorion and placenta in comparison to bone marrow-derived MSCs and investigates the role of miRNAs in the osteogenic differentiation of MSCs from these sources. MSCs were isolated from human bone marrow, chorion and placenta. The osteogenic differentiation potential after BMP-2 treatment was examined using ALP staining, ALP activity assay, and osteogenic gene expression. Candidate miRNAs were selected and their expression levels during osteoblastic differentiation were examined using real-time RT-PCR. The role of these miRNAs in osteogenesis was investigated by transfection with specific miRNA inhibitors. The level of osteogenic differentiation was monitored after anti-miRNA treatment. MSCs isolated from chorion and placenta exhibited self-renewal capacity and multi-lineage differentiation potential similar to MSCs isolated from bone marrow. BMP-2 treated MSCs showed higher ALP levels and osteogenic gene expression compared to untreated MSCs. All investigated miRNAs (miR-31, miR-106a and miR148) were consistently downregulated during the process of osteogenic differentiation. After treatment with miRNA inhibitors, ALP activity and osteogenic gene expression increased over the time of osteogenic differentiation. BMP-2 has a positive effect on osteogenic differentiation of chorion- and placenta-derived MSCs. The inhibition of specific miRNAs enhanced the osteogenic differentiation capacity of various MSCs in culture and this strategy might be used to promote bone regeneration. However, further in vivo experiments are required to assess the validity of this approach.


2021 ◽  
pp. 088532822110185
Author(s):  
Yuksel Cetin ◽  
Merve G Sahin ◽  
Fatma N Kok

Cardiac tissue engineering focusing on biomaterial scaffolds incorporating cells from different sources has been explored to regenerate or repair damaged area as a lifesaving approach.The aim of this study was to evaluate the cardiomyocyte differentiation potential of human adipose mesenchymal stem cells (hAD-MSCs) as an alternative cell source on silk fibroin (SF) scaffolds for cardiac tissue engineering. The change in surface morphology of SF scaffolds depending on SF concentration (1–6%, w/v) and increase in their porosity upon application of unidirectional freezing were visualized by scanning electron microscopy (SEM). Swelling ratio was found to increase 2.4 fold when SF amount was decreased from 4% to 2%. To avoid excessive swelling, 4% SF scaffold with swelling ratio of 10% (w/w) was chosen for further studies.Biodegradation rate of SF scaffolds depended on enzymatic activity was found to be 75% weight loss of SF scaffolds at the day 14. The phenotype of hAD-MSCs and their multi-linage potential into chondrocytes, osteocytes, and adipocytes were shown by flow cytometry and immunohistochemical staining, respectively.The viability of hAD-MSCs on 3D SF scaffolds was determined as 90%, 118%, and 138% after 1, 7, and 14 days, respectively. The use of 3D SF scaffolds was associated with increased production of cardiomyogenic biomarkers: α-actinin, troponin I, connexin 43, and myosin heavy chain. The fabricated 3D SF scaffolds were proved to sustain hAD-MSCs proliferation and cardiomyogenic differentiation therefore, hAD-MSCs on 3D SF scaffolds may useful tool to regenerate or repair damaged area using cardiac tissue engineering techniques.


2017 ◽  
pp. 1-11 ◽  
Author(s):  
Guoqing Li ◽  
Nannan Han ◽  
Haoqing Yang ◽  
Liping Wang ◽  
Xiao Lin ◽  
...  

2009 ◽  
Vol 132 (5) ◽  
pp. 533-546 ◽  
Author(s):  
Erdal Karaoz ◽  
Ayça Aksoy ◽  
Selda Ayhan ◽  
Ayla Eker Sarıboyacı ◽  
Figen Kaymaz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document