scholarly journals Myopia disease mouse models: a missense point mutation (S673G) and a protein-truncating mutation of the Zfp644 mimic human disease phenotype

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Katarzyna I. Szczerkowska ◽  
Silvia Petrezselyova ◽  
Jiri Lindovsky ◽  
Marcela Palkova ◽  
Jan Dvorak ◽  
...  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Paige B. Martin ◽  
Yu Kigoshi-Tansho ◽  
Roger B. Sher ◽  
Gianina Ravenscroft ◽  
Jennifer E. Stauffer ◽  
...  

Abstract A hallmark of neurodegeneration is defective protein quality control. The E3 ligase Listerin (LTN1/Ltn1) acts in a specialized protein quality control pathway—Ribosome-associated Quality Control (RQC)—by mediating proteolytic targeting of incomplete polypeptides produced by ribosome stalling, and Ltn1 mutation leads to neurodegeneration in mice. Whether neurodegeneration results from defective RQC and whether defective RQC contributes to human disease have remained unknown. Here we show that three independently-generated mouse models with mutations in a different component of the RQC complex, NEMF/Rqc2, develop progressive motor neuron degeneration. Equivalent mutations in yeast Rqc2 selectively interfere with its ability to modify aberrant translation products with C-terminal tails which assist with RQC-mediated protein degradation, suggesting a pathomechanism. Finally, we identify NEMF mutations expected to interfere with function in patients from seven families presenting juvenile neuromuscular disease. These uncover NEMF’s role in translational homeostasis in the nervous system and implicate RQC dysfunction in causing neurodegeneration.


2008 ◽  
Author(s):  
Martin Fenner

One of the opening lectures this Saturday of the International Congress of Genetics was held by Mario Capecchi. His talked was entitled Modeling human disease in the mouse: from cancer to neuropsychiatric disorders. In the first half he described his mouse model of synovial sarcoma. ...


2019 ◽  
Vol 35 (1) ◽  
Author(s):  
Daejin Hyung ◽  
Ann-Marie Mallon ◽  
Dong Soo Kyung ◽  
Soo Young Cho ◽  
Je Kyung Seong

Abstract Genetically engineered mouse models are used in high-throughput phenotyping screens to understand genotype-phenotype associations and their relevance to human diseases. However, not all mutant mouse lines with detectable phenotypes are associated with human diseases. Here, we propose the “Target gene selection system for Genetically engineered mouse models” (TarGo). Using a combination of human disease descriptions, network topology, and genotype-phenotype correlations, novel genes that are potentially related to human diseases are suggested. We constructed a gene interaction network using protein-protein interactions, molecular pathways, and co-expression data. Several repositories for human disease signatures were used to obtain information on human disease-related genes. We calculated disease- or phenotype-specific gene ranks using network topology and disease signatures. In conclusion, TarGo provides many novel features for gene function prediction.


2006 ◽  
Vol 34 (4) ◽  
pp. 429-454 ◽  
Author(s):  
Nirmala Bhogal ◽  
Robert Combes
Keyword(s):  

2017 ◽  
Vol 118 (2) ◽  
pp. 845-854 ◽  
Author(s):  
Neal S. Peachey ◽  
Nazarul Hasan ◽  
Bernard FitzMaurice ◽  
Samantha Burrill ◽  
Gobinda Pangeni ◽  
...  

This article describes a mouse model of the human disease complete congenital stationary night blindness in which the mutation reduces but does not eliminate GRM6 expression and bipolar cell function, a phenotype distinct from that seen in other Grm6 mouse models.


2016 ◽  
Vol 186 (7) ◽  
pp. 1925-1938 ◽  
Author(s):  
Scott H. Greenwald ◽  
Jeremy R. Charette ◽  
Magdalena Staniszewska ◽  
Lan Ying Shi ◽  
Steve D.M. Brown ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-22 ◽  
Author(s):  
Kenneth C. Valkenburg ◽  
Bart O. Williams

The development and optimization of high-throughput screening methods has identified a multitude of genetic changes associated with human disease. The use of immunodeficient and genetically engineered mouse models that mimic the human disease has been crucial in validating the importance of these genetic pathways in prostate cancer. These models provide a platform for finding novel therapies to treat human patients afflicted with prostate cancer as well as those who have debilitating bone metastases. In this paper, we focus on the historical development and phenotypic descriptions of mouse models used to study prostate cancer. We also comment on how closely each model recapitulates human prostate cancer.


Sign in / Sign up

Export Citation Format

Share Document