scholarly journals NME6 is a phosphotransfer-inactive, monomeric NME/NDPK family member and functions in complexes at the interface of mitochondrial inner membrane and matrix

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bastien Proust ◽  
Martina Radić ◽  
Nikolina Škrobot Vidaček ◽  
Cécile Cottet ◽  
Stéphane Attia ◽  
...  

Abstract Background NME6 is a member of the nucleoside diphosphate kinase (NDPK/NME/Nm23) family which has key roles in nucleotide homeostasis, signal transduction, membrane remodeling and metastasis suppression. The well-studied NME1-NME4 proteins are hexameric and catalyze, via a phospho-histidine intermediate, the transfer of the terminal phosphate from (d)NTPs to (d)NDPs (NDP kinase) or proteins (protein histidine kinase). For the NME6, a gene/protein that emerged early in eukaryotic evolution, only scarce and partially inconsistent data are available. Here we aim to clarify and extend our knowledge on the human NME6. Results We show that NME6 is mostly expressed as a 186 amino acid protein, but that a second albeit much less abundant isoform exists. The recombinant NME6 remains monomeric, and does not assemble into homo-oligomers or hetero-oligomers with NME1-NME4. Consequently, NME6 is unable to catalyze phosphotransfer: it does not generate the phospho-histidine intermediate, and no NDPK activity can be detected. In cells, we could resolve and extend existing contradictory reports by localizing NME6 within mitochondria, largely associated with the mitochondrial inner membrane and matrix space. Overexpressing NME6 reduces ADP-stimulated mitochondrial respiration and complex III abundance, thus linking NME6 to dysfunctional oxidative phosphorylation. However, it did not alter mitochondrial membrane potential, mass, or network characteristics. Our screen for NME6 protein partners revealed its association with NME4 and OPA1, but a direct interaction was observed only with RCC1L, a protein involved in mitochondrial ribosome assembly and mitochondrial translation, and identified as essential for oxidative phosphorylation. Conclusions NME6, RCC1L and mitoribosomes localize together at the inner membrane/matrix space where NME6, in concert with RCC1L, may be involved in regulation of the mitochondrial translation of essential oxidative phosphorylation subunits. Our findings suggest new functions for NME6, independent of the classical phosphotransfer activity associated with NME proteins.

2009 ◽  
Vol 8 (11) ◽  
pp. 1792-1802 ◽  
Author(s):  
Lixia Jia ◽  
Jasvinder Kaur ◽  
Rosemary A. Stuart

ABSTRACT The Oxa1 protein plays a central role in facilitating the cotranslational insertion of the nascent polypeptide chains into the mitochondrial inner membrane. Mitochondrially encoded proteins are synthesized on matrix-localized ribosomes which are tethered to the inner membrane and in physical association with the Oxa1 protein. In the present study we used a chemical cross-linking approach to map the Saccharomyces cerevisiae Oxa1-ribosome interface, and we demonstrate here a close association of Oxa1 and the large ribosomal subunit protein, MrpL40. Evidence to indicate that a close physical and functional relationship exists between MrpL40 and another large ribosomal protein, the Mrp20/L23 protein, is also provided. MrpL40 shares sequence features with the bacterial ribosomal protein L24, which like Mrp20/L23 is known to be located adjacent to the ribosomal polypeptide exit site. We propose therefore that MrpL40 represents the Saccharomyces cerevisiae L24 homolog. MrpL40, like many mitochondrial ribosomal proteins, contains a C-terminal extension region that bears no similarity to the bacterial counterpart. We show that this C-terminal mitochondria-specific region is important for MrpL40's ability to support the synthesis of the correct complement of mitochondrially encoded proteins and their subsequent assembly into oxidative phosphorylation complexes.


2020 ◽  
Vol 133 (14) ◽  
pp. jcs240374 ◽  
Author(s):  
Richard G. Lee ◽  
Junjie Gao ◽  
Stefan J. Siira ◽  
Anne-Marie Shearwood ◽  
Judith A. Ermer ◽  
...  

ABSTRACTThe mitochondrial inner membrane contains a unique phospholipid known as cardiolipin (CL), which stabilises the protein complexes embedded in the membrane and supports its overall structure. Recent evidence indicates that the mitochondrial ribosome may associate with the inner membrane to facilitate co-translational insertion of the hydrophobic oxidative phosphorylation (OXPHOS) proteins into the inner membrane. We generated three mutant knockout cell lines for the CL biosynthesis gene Crls1 to investigate the effects of CL loss on mitochondrial protein synthesis. Reduced CL levels caused altered mitochondrial morphology and transcriptome-wide changes that were accompanied by uncoordinated mitochondrial translation rates and impaired respiratory chain supercomplex formation. Aberrant protein synthesis was caused by impaired formation and distribution of mitochondrial ribosomes. Reduction or loss of CL resulted in divergent mitochondrial and endoplasmic reticulum stress responses. We show that CL is required to stabilise the interaction of the mitochondrial ribosome with the membrane via its association with OXA1 (also known as OXA1L) during active translation. This interaction facilitates insertion of newly synthesised mitochondrial proteins into the inner membrane and stabilises the respiratory supercomplexes.


2014 ◽  
Vol 205 (4) ◽  
pp. 511-524 ◽  
Author(s):  
Markus Hildenbeutel ◽  
Eric L. Hegg ◽  
Katharina Stephan ◽  
Steffi Gruschke ◽  
Brigitte Meunier ◽  
...  

Mitochondrial respiratory chain complexes convert chemical energy into a membrane potential by connecting electron transport with charge separation. Electron transport relies on redox cofactors that occupy strategic positions in the complexes. How these redox cofactors are assembled into the complexes is not known. Cytochrome b, a central catalytic subunit of complex III, contains two heme bs. Here, we unravel the sequence of events in the mitochondrial inner membrane by which cytochrome b is hemylated. Heme incorporation occurs in a strict sequential process that involves interactions of the newly synthesized cytochrome b with assembly factors and structural complex III subunits. These interactions are functionally connected to cofactor acquisition that triggers the progression of cytochrome b through successive assembly intermediates. Failure to hemylate cytochrome b sequesters the Cbp3–Cbp6 complex in early assembly intermediates, thereby causing a reduction in cytochrome b synthesis via a feedback loop that senses hemylation of cytochrome b.


1978 ◽  
Vol 172 (3) ◽  
pp. 557-568 ◽  
Author(s):  
R N Johnson ◽  
B E Volcani

1. To gain insight into a putative role for mitochondria in silicon metabolism, mitochondrial uptake (by which it is meant the removal from the medium) of silicic acid [Si(OH)4] was studied under conditions minimizing SI(OH)4 polymerization. 2. Measurements of mitochondrial respiration and swelling indicated indirectly a significant uptake of Si(OH)4 as a weak acid, but this was not confirmed when 31Si(OH)4 was used as a tracer. 31Si(OH)4 occupied a mitochondrial volume similar to that of 3H2O and was relatively unaffected by mitochondrial energy status and by the pH gradient across the mitochondrial inner membrane. 3. Uptake was directly proportional to Si(OH)4 concentration in the range 0-3 mM. 4. The uptake consisted of two components: under all conditions examined, the greater quantity, amounting to 1-2nmol of Si(OH)4/mg of mitochondrial protein, was bound, a major portion of it external to the inner membrane, with the lesser quantity free within the matrix space. 5. Equilibration of 31Si(OH)4 between medium and matrix was a slow process, having a half-time of approx. 10 min at 22 degrees C. 6. Mersalyl and N-ethylmaleimide inhibited the uptake by preferentially lowering the amount of Si(OH)4 bound. Their action was somewhat variable, depending on the precise nature of the suspending medium, and suggesting that the bound material may represent polymerized forms of Si(OH)4. 7. It is concluded that Si(OH)4 may penetrate the mitochondrial inner membrane by a simple diffusion mechanism.


2001 ◽  
Vol 29 (4) ◽  
pp. 431-436 ◽  
Author(s):  
T. Langer ◽  
M. Käser ◽  
C. Klanner ◽  
K. Leonhard

An ubiquitous and conserved proteolytic system regulates the stability of mitochondrial inner membrane proteins. Two AAA proteases with catalytic sites at opposite membrane surfaces form a membrane-integrated quality control system and exert crucial functions during the biogenesis of mitochondria. Their activity is modulated by another membrane-protein complex that is composed of prohibitins. Peptides generated upon proteolysis in the matrix space are transported across the inner membrane by an ATP-binding cassette transporter. The function of these conserved components is discussed in the present review.


2003 ◽  
Vol 160 (4) ◽  
pp. 553-564 ◽  
Author(s):  
Marlies Messerschmitt ◽  
Stefan Jakobs ◽  
Frank Vogel ◽  
Stefan Fritz ◽  
Kai Stefan Dimmer ◽  
...  

Mitochondrial distribution and morphology depend on MDM33, a Saccharomyces cerevisiae gene encoding a novel protein of the mitochondrial inner membrane. Cells lacking Mdm33 contain ring-shaped, mostly interconnected mitochondria, which are able to form large hollow spheres. On the ultrastructural level, these aberrant organelles display extremely elongated stretches of outer and inner membranes enclosing a very narrow matrix space. Dilated parts of Δmdm33 mitochondria contain well-developed cristae. Overexpression of Mdm33 leads to growth arrest, aggregation of mitochondria, and generation of aberrant inner membrane structures, including septa, inner membrane fragments, and loss of inner membrane cristae. The MDM33 gene is required for the formation of net-like mitochondria in mutants lacking components of the outer membrane fission machinery, and mitochondrial fusion is required for the formation of extended ring-like mitochondria in cells lacking the MDM33 gene. The Mdm33 protein assembles into an oligomeric complex in the inner membrane where it performs homotypic protein–protein interactions. Our results indicate that Mdm33 plays a distinct role in the mitochondrial inner membrane to control mitochondrial morphology. We propose that Mdm33 is involved in fission of the mitochondrial inner membrane.


2006 ◽  
Vol 175 (2) ◽  
pp. 237-247 ◽  
Author(s):  
Frank Vogel ◽  
Carsten Bornhövd ◽  
Walter Neupert ◽  
Andreas S. Reichert

The inner membrane of mitochondria is organized in two morphologically distinct domains, the inner boundary membrane (IBM) and the cristae membrane (CM), which are connected by narrow, tubular cristae junctions. The protein composition of these domains, their dynamics, and their biogenesis and maintenance are poorly understood at the molecular level. We have used quantitative immunoelectron microscopy to determine the distribution of a collection of representative proteins in yeast mitochondria belonging to seven major processes: oxidative phosphorylation, protein translocation, metabolite exchange, mitochondrial morphology, protein translation, iron–sulfur biogenesis, and protein degradation. We show that proteins are distributed in an uneven, yet not exclusive, manner between IBM and CM. The individual distributions reflect the physiological functions of proteins. Moreover, proteins can redistribute between the domains upon changes of the physiological state of the cell. Impairing assembly of complex III affects the distribution of partially assembled subunits. We propose a model for the generation of this dynamic subcompartmentalization of the mitochondrial inner membrane.


Sign in / Sign up

Export Citation Format

Share Document