scholarly journals Diaphragm dysfunction, lung aeration loss and weaning-induced pulmonary oedema in difficult-to-wean patients

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Martin Dres ◽  
Emmanuel Rozenberg ◽  
Elise Morawiec ◽  
Julien Mayaux ◽  
Julie Delemazure ◽  
...  

Abstract Background Diaphragm dysfunction and weaning-induced pulmonary oedema are commonly involved during weaning failure, but their physiological interactions have been poorly reported. Our hypothesis was that diaphragm dysfunction is not particularly associated with weaning-induced pulmonary oedema. Methods It was a single-centre and physiological study conducted in patients who had failed a first spontaneous breathing trial and who underwent a second trial. The diaphragm function was evaluated by measuring the tracheal pressure generated in response to a bilateral magnetic phrenic nerves stimulations. Weaning-induced pulmonary oedema was diagnosed in case of failure of the spontaneous breathing trial if patients exhibited signs of plasma concentration or echocardiographic diagnosis of pulmonary artery occlusion pressure elevation. Results Fifty-three patients were included and 31/53 (58%) failed the spontaneous breathing trial, including 24/31 (77%) patients with weaning-induced pulmonary oedema. Diaphragm dysfunction was present in 33/53 (62%) patients. Diaphragm dysfunction or weaning-induced pulmonary oedema were present in 26/31 (84%) of the patients who failed the spontaneous breathing trial. Weaning-induced pulmonary oedema occurred in 20/33 (61%) patients with a diaphragm dysfunction and in 4/20 (20%) patients without (p = 0.005). Conclusion Weaning-induced pulmonary oedema was three times more frequent in case of diaphragm dysfunction. Even in case of diaphragm dysfunction, physicians might be encouraged to investigate the presence of weaning-induced pulmonary oedema during weaning failure.

2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Jing Xia ◽  
Chuan-Yun Qian ◽  
Li Yang ◽  
Mei-Ju Li ◽  
Xiao-Xue Liu ◽  
...  

Abstract Background A spontaneous breathing trial (SBT) is a major diagnostic tool to predict successfully extubation in patients. Several factors may lead to weaning failure, including the degree of lung aeration loss and diaphragm dysfunction. The main objective was to compare the diaphragmatic contractility between patients with high lung aeration loss and low lung aeration loss during a 30-minute SBT by ultrasound. Methods This was a prospective single-center study. Lung ultrasound aeration score (LUS) and diaphragmatic thickening fraction (DTF) were measured during mechanical ventilation 1 h before SBT (T-1), 30 min (T1), and 120 min (T2) after the start of the SBT during quiet breathing. The right and left DTF were compared between patients with LUS ≥ 14 (high lung aeration loss), considered at high risk of post-extubation distress, and those with LUS < 14 (low lung aeration loss). The relationship between the LUS and DTF and the changes in LUS and DTF from T-1 to T2 in patients with LUS ≥ 14 were assessed. Results Forty-nine patients were analyzed; 33 had LUS ≥ 14 and 16 had LUS < 14 at T1. The DTF at T1 was significantly higher in patients with LUS ≥ 14 than in those with LUS < 14: the right median (IQR) DTF was 22.2% (17.1 to 30.9%) vs. 14.8% (10.2 to 27.0%) (p = 0.035), and the left median (IQR) DTF was 25.0% (18.4 to 35.0%) vs. 18.6% (9.7 to 24.2%) (p = 0.017), respectively. There was a moderate positive correlation between the LUS and the DTF (Rho = 0.3, p = 0.014). A significant increase in the LUS was observed from T-1 to T1, whereas no change was found between T1 and T2. The DTF remained stable from T-1 to T2. Conclusions During a SBT, diaphragmatic contraction acts differently depending on the degree of pulmonary aeration. In patients with high lung aeration loss, increased diaphragmatic contractility indicates an additional respiratory effort to compensate lung volume loss that would contribute to successful SBT. Further studies are needed to evaluate the combined evaluation of lung aeration and diaphragmatic function to predict the successful weaning of patients from mechanical ventilation.


2021 ◽  
Vol 49 (5) ◽  
pp. 030006052110100
Author(s):  
Ju Gong ◽  
Bibo Zhang ◽  
Xiaowen Huang ◽  
Bin Li ◽  
Jian Huang

Objective Clinicians cannot precisely determine the time for withdrawal of ventilation. We aimed to evaluate the performance of driving pressure (DP)×respiratory rate (RR) to predict the outcome of weaning. Methods Plateau pressure (Pplat) and total positive end-expiratory pressure (PEEPtot) were measured during mechanical ventilation with brief deep sedation and on volume-controlled mechanical ventilation with a tidal volume of 6 mL/kg and a PEEP of 0 cmH2O. Pplat and PEEPtot were measured by patients holding their breath for 2 s after inhalation and exhalation, respectively. DP was determined as Pplat minus PEEPtot. The rapid shallow breathing index was measured from the ventilator. The highest RR was recorded within 3 minutes during a spontaneous breathing trial. Patients who tolerated a spontaneous breathing trial for 1 hour were extubated. Results Among the 105 patients studied, 44 failed weaning. During ventilation withdrawal, DP×RR was 136.7±35.2 cmH2O breaths/minute in the success group and 230.2±52.2 cmH2O breaths/minute in the failure group. A DP×RR index >170.8 cmH2O breaths/minute had a sensitivity of 93.2% and specificity of 88.5% to predict failure of weaning. Conclusions Measurement of DP×RR during withdrawal of ventilation may help predict the weaning outcome. A high DP×RR increases the likelihood of weaning failure. Statement: This manuscript was previously posted as a preprint on Research Square with the following link: https://www.researchsquare.com/article/rs-15065/v3 and DOI: 10.21203/rs.2.24506/v3


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Alessandro Ghiani ◽  
Joanna Paderewska ◽  
Swenja Walcher ◽  
Konstantinos Tsitouras ◽  
Claus Neurohr ◽  
...  

AbstractSince critical respiratory muscle workload is a significant determinant of weaning failure, applied mechanical power (MP) during artificial ventilation may serve for readiness testing before proceeding on a spontaneous breathing trial (SBT). Secondary analysis of a prospective, observational study in 130 prolonged ventilated, tracheotomized patients. Calculated MP’s predictive SBT outcome performance was determined using the area under receiver operating characteristic curve (AUROC), measures derived from k-fold cross-validation (likelihood ratios, Matthew's correlation coefficient [MCC]), and a multivariable binary logistic regression model. Thirty (23.1%) patients failed the SBT, with absolute MP presenting poor discriminatory ability (MCC 0.26; AUROC 0.68, 95%CI [0.59‒0.75], p = 0.002), considerably improved when normalized to lung-thorax compliance (LTCdyn-MP, MCC 0.37; AUROC 0.76, 95%CI [0.68‒0.83], p < 0.001) and mechanical ventilation PaCO2 (so-called power index of the respiratory system [PIrs]: MCC 0.42; AUROC 0.81 [0.73‒0.87], p < 0.001). In the logistic regression analysis, PIrs (OR 1.48 per 1000 cmH2O2/min, 95%CI [1.24‒1.76], p < 0.001) and its components LTCdyn-MP (1.25 per 1000 cmH2O2/min, [1.06‒1.46], p < 0.001) and mechanical ventilation PaCO2 (1.17 [1.06‒1.28], p < 0.001) were independently related to SBT failure. MP normalized to respiratory system compliance may help identify prolonged mechanically ventilated patients ready for spontaneous breathing.


2020 ◽  
Vol 132 (5) ◽  
pp. 1114-1125 ◽  
Author(s):  
Martin Dres ◽  
Bruno-Pierre Dubé ◽  
Ewan Goligher ◽  
Stefannie Vorona ◽  
Suela Demiri ◽  
...  

Abstract Background The assessment of diaphragm function with diaphragm ultrasound seems to bring important clinical information to describe diaphragm work and weakness. When the diaphragm is weak, extradiaphragmatic muscles may play an important role, but whether ultrasound can also assess their activity and function is unknown. This study aimed to (1) evaluate the feasibility of measuring the thickening of the parasternal intercostal and investigate the responsiveness of this muscle to assisted ventilation; and (2) evaluate whether a combined evaluation of the parasternal and the diaphragm could predict failure of a spontaneous breathing trial. Methods First, an exploratory evaluation of the parasternal in 23 healthy subjects. Second, the responsiveness of parasternal to several pressure support levels were studied in 16 patients. Last, parasternal activity was compared in presence or absence of diaphragm dysfunction (assessed by magnetic stimulation of the phrenic nerves and ultrasound) and in case of success/failure of a spontaneous breathing trial in 54 patients. Results The parasternal was easily accessible in all patients. The interobserver reproducibility was good (intraclass correlation coefficient, 0.77 (95% CI, 0.53 to 0.89). There was a progressive decrease in parasternal muscle thickening fraction with increasing levels of pressure support (Spearman ρ = −0.61 [95% CI, −0.74 to −0.44]; P &lt; 0.0001) and an inverse correlation between parasternal muscle thickening fraction and the pressure generating capacity of the diaphragm (Spearman ρ = −0.79 [95% CI, −0.87 to −0.66]; P &lt; 0.0001). The parasternal muscle thickening fraction was higher in patients with diaphragm dysfunction: 17% (10 to 25) versus 5% (3 to 8), P &lt; 0.0001. The pressure generating capacity of the diaphragm, the diaphragm thickening fraction and the parasternal thickening fraction similarly predicted failure or the spontaneous breathing trial. Conclusions Ultrasound assessment of the parasternal intercostal muscle is feasible in the intensive care unit and provides novel information regarding the respiratory capacity load balance. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


Author(s):  
Annalisa Carlucci ◽  
Paolo Navalesi

Weaning failure has been defined as failure to discontinue mechanical ventilation, as assessed by the spontaneous breathing trial, or need for re-intubation after extubation, so-called extubation failure. Both events represent major clinical and economic burdens, and are associated with high morbidity and mortality. The most important mechanism leading to discontinuation failure is an unfavourable balance between respiratory muscle capacity and the load they must face. Beyond specific diseases leading to loss of muscle force-generating capacity, other factors may impair respiratory muscle function, including prolonged mechanical ventilation, sedation, and ICU-acquired neuromuscular dysfunction, potentially consequent to multiple factors. The load depends on the mechanical properties of the respiratory system. An increased load is consequent to any condition leading to increased resistance, reduced compliance, and/or occurrence of intrinsic positive-end-expiratory pressure. Noteworthy, the load can significantly increase throughout the spontaneous breathing trial. Cardiac, cerebral, and neuropsychiatric disorders are also causes of discontinuation failure. Extubation failure may depend, on the one hand, on a deteriorated force-load balance occurring after removal of the endotracheal tube and, on the other hand, on specific problems. Careful patient evaluation, avoidance and treatment of all the potential determinants of failure are crucial to achieve successful discontinuation and extubation.


2008 ◽  
Vol 9 (4) ◽  
pp. 301-310 ◽  
Author(s):  
Susan K. Frazier ◽  
Debra K. Moser ◽  
Rebecca Schlanger ◽  
Jeanne Widener ◽  
Lauren Pender ◽  
...  

Mechanical ventilator support and the resumption of spontaneous ventilation or weaning create significant alterations in alveolar and intrathoracic pressure that influence thoracic blood volume and flow. Compensatory autonomic tone alterations occur to ensure adequate tissue oxygen delivery, but autonomic responses may produce cardiovascular dysfunction with subsequent weaning failure. The authors describe autonomic responses of critically ill patients ( n = 43) during a 24-hr period of mechanical ventilatory support and during the 24 hr that included their initial spontaneous breathing trial using continuous positive airway pressure. Nearly two thirds of these patients demonstrated abnormal autonomic function and this dysfunction was more severe in those patients who were unable to sustain spontaneous ventilation ( n = 15). With further systematic study, autonomic responses may be useful in the identification of patients who are likely to develop cardiac dysfunction with the resumption of spontaneous breathing.


2007 ◽  
Vol 35 (4) ◽  
pp. 610-613 ◽  
Author(s):  
I. Stanopoulos ◽  
N. Manolakoglou ◽  
G. Pitsiou ◽  
I. Trigonis ◽  
E. A. Tsiata ◽  
...  

We report three cases of mechanically ventilated chronic obstructive pulmonary disease patients who were intubated due to an exacerbation of their disease and who presented with repeated spontaneous breathing trial failures. Patients were given 50 mg of sildenafil through the nasogastric tube, under close monitoring of haemodynamic and ventilatory parameters. After sildenafil, pulmonary artery pressure, pulmonary artery occlusion pressure, the respiratory frequency to tidal volume ratio and the PCO2-PETCO2 (arterial minus end-tidal carbon dioxide pressure) decreased. Cardiac output increased in two of the patients, while all of them were successfully extubated. This is the first report of successful extubation after sildenafil use.


PLoS ONE ◽  
2019 ◽  
Vol 14 (12) ◽  
pp. e0225181
Author(s):  
Sebastián Dubo ◽  
Emilio Daniel Valenzuela ◽  
Andrés Aquevedo ◽  
Manuel Jibaja ◽  
Dolores Berrutti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document