scholarly journals The cellular niche for intestinal stem cells: a team effort

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Guoli Zhu ◽  
Jiulong Hu ◽  
Rongwen Xi

AbstractThe rapidly self-renewing epithelium in the mammalian intestine is maintained by multipotent intestinal stem cells (ISCs) located at the bottom of the intestinal crypt that are interspersed with Paneth cells in the small intestine and Paneth-like cells in the colon. The ISC compartment is also closely associated with a sub-epithelial compartment that contains multiple types of mesenchymal stromal cells. With the advances in single cell and gene editing technologies, rapid progress has been made for the identification and characterization of the cellular components of the niche microenvironment that is essential for self-renewal and differentiation of ISCs. It has become increasingly clear that a heterogeneous population of mesenchymal cells as well as the Paneth cells collectively provide multiple secreted niche signals to promote ISC self-renewal. Here we review and summarize recent advances in the regulation of ISCs with a main focus on the definition of niche cells that sustain ISCs.

2006 ◽  
Vol 20 (4) ◽  
pp. E27 ◽  
Author(s):  
Patrizia Tunici ◽  
Dwain Irvin ◽  
Gentao Liu ◽  
Xiangpeng Yuan ◽  
Zeng Zhaohui ◽  
...  

✓ The observation of similarities between the self-renewal mechanisms of stem cells and cancer cells has led to the new concept of the cancer stem cell. In cases of leukemia, multiple myeloma, and breast cancer, cells with a high self-renewal potential have been identified. Furthermore, investigators have shown these cells' ability to drive the formation and growth of the tumor. Brain tumors have also been reported to possess a subpopulation of cancer stemlike cells that have the ability to proliferate, self-renew, and be multipotent. When grafted into mice, these cells are also able to generate a tumor that recapitulates that of the patient from whom the cells were derived. The identification and characterization of this new category of cells call for new therapies capable of selectively targeting and killing these multifaceted cells.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Yu-Hui Hao ◽  
Zhi-Zhen Liu ◽  
Hong Zhao ◽  
Lei Wang ◽  
Ajab Khan ◽  
...  

2020 ◽  
Vol 39 (13) ◽  
Author(s):  
Buqing Ye ◽  
Liuliu Yang ◽  
Guomin Qian ◽  
Benyu Liu ◽  
Xiaoxiao Zhu ◽  
...  

2017 ◽  
Vol 312 (6) ◽  
pp. G592-G605 ◽  
Author(s):  
Kunihiro Kishida ◽  
Sarah C. Pearce ◽  
Shiyan Yu ◽  
Nan Gao ◽  
Ronaldo P. Ferraris

Nutrient sensing triggers responses by the gut-brain axis modulating hormone release, feeding behavior and metabolism that become dysregulated in metabolic syndrome and some cancers. Except for absorptive enterocytes and secretory enteroendocrine cells, the ability of many intestinal cell types to sense nutrients is still unknown; hence we hypothesized that progenitor stem cells (intestinal stem cells, ISC) possess nutrient sensing ability inherited by progenies during differentiation. We directed via modulators of Wnt and Notch signaling differentiation of precursor mouse intestinal crypts into specialized organoids each containing ISC, enterocyte, goblet, or Paneth cells at relative proportions much higher than in situ as determined by mRNA expression and immunocytochemistry of cell type biomarkers. We identified nutrient sensing cell type(s) by increased expression of fructolytic genes in response to a fructose challenge. Organoids comprised primarily of enterocytes, Paneth, or goblet, but not ISC, cells responded specifically to fructose without affecting nonfructolytic genes. Sensing was independent of Wnt and Notch modulators and of glucose concentrations in the medium but required fructose absorption and metabolism. More mature enterocyte- and goblet-enriched organoids exhibited stronger fructose responses. Remarkably, enterocyte organoids, upon forced dedifferentiation to reacquire ISC characteristics, exhibited a markedly extended lifespan and retained fructose sensing ability, mimicking responses of some dedifferentiated cancer cells. Using an innovative approach, we discovered that nutrient sensing is likely repressed in progenitor ISCs then irreversibly derepressed during specification into sensing-competent absorptive or secretory lineages, the surprising capacity of Paneth and goblet cells to detect fructose, and the important role of differentiation in modulating nutrient sensing. NEW & NOTEWORTHY Small intestinal stem cells differentiate into several cell types transiently populating the villi. We used specialized organoid cultures each comprised of a single cell type to demonstrate that 1) differentiation seems required for nutrient sensing, 2) secretory goblet and Paneth cells along with enterocytes sense fructose, suggesting that sensing is acquired after differentiation is triggered but before divergence between absorptive and secretory lineages, and 3) forcibly dedifferentiated enterocytes exhibit fructose sensing and lifespan extension.


Sign in / Sign up

Export Citation Format

Share Document