extended lifespan
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 92)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Vol 8 ◽  
Author(s):  
Haitao Zhou ◽  
Shanshan Ding ◽  
Chuanxin Sun ◽  
Jiahui Fu ◽  
Dong Yang ◽  
...  

Lycium barbarum berry (Ningxia Gouqi, Fructus lycii, goji berry, or wolfberry), as a traditional Chinese herb, was recorded beneficial for longevity in traditional Chinese medical scriptures and currently is a natural dietary supplement worldwide. However, under modern experimental conditions, the longevity effect of L. barbarum berry and the underlying mechanisms have been less studied. Here, we reported that total water extracts of L. barbarum berry (LBE), which contains 22% polysaccharides and other components, such as anthocyanins, extended the lifespan of Caenorhabditis elegans without side effects on worm fertility and pharyngeal pumping. Interestingly, we found that the lifespan extension effect was more prominent in worms with shorter mean lifespan as compared to those with longer mean lifespan. Furthermore, we showed that the lifespan extension effect of LBE depended on deacetylase sir-2.1. Remarkably, LBE rescued heat shock transcription factor-1 (hsf-1) deficiency in wild-type worms with different mean lifespans, and this effect also depended on sir-2.1. In addition, we found that LBE extended lifespan and alleviated toxic protein aggregation in neurodegenerative worms with hsf-1 deficiency. Our study suggested that LBE may be a potential antiaging natural dietary supplement especially to individuals with malnutrition or chronic diseases and a potential therapeutic agent for neurodegenerative diseases characterized by hsf-1 deficiency.


2021 ◽  
Vol 5 (3) ◽  
pp. e202101140
Author(s):  
Matthieu Caron ◽  
Loïc Gely ◽  
Steven Garvis ◽  
Annie Adrait ◽  
Yohann Couté ◽  
...  

Changes in histone post-translational modifications are associated with aging through poorly defined mechanisms. Histone 3 lysine 4 (H3K4) methylation at promoters is deposited by SET1 family methyltransferases acting within conserved multiprotein complexes known as COMPASS. Previous work yielded conflicting results about the requirement for H3K4 methylation during aging. Here, we reassessed the role of SET1/COMPASS–dependent H3K4 methylation in Caenorhabditis elegans lifespan and fertility by generating set-2(syb2085) mutant animals that express a catalytically inactive form of SET-2, the C. elegans SET1 homolog. We show that set-2(syb2085) animals retain the ability to form COMPASS, but have a marked global loss of H3K4 di- and trimethylation (H3K4me2/3). Reduced H3K4 methylation was accompanied by loss of fertility, as expected; however, in contrast to earlier studies, set-2(syb2085) mutants displayed a significantly shortened, not extended, lifespan and had normal intestinal fat stores. Other commonly used set-2 mutants were also short-lived, as was a cfp-1 mutant that lacks the SET1/COMPASS chromatin-targeting component. These results challenge previously held views and establish that WT H3K4me2/3 levels are essential for normal lifespan in C. elegans.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tae-Gyun Woo ◽  
Min-Ho Yoon ◽  
So-mi Kang ◽  
Soyoung Park ◽  
Jung-Hyun Cho ◽  
...  

AbstractAmyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective death of motor neurons. Mutations in Cu, Zn-superoxide dismutase (SOD1) causing the gain of its toxic property are the major culprit of familial ALS (fALS). The abnormal SOD1 aggregation in the motor neurons has been suggested as the major pathological hallmark of ALS patients. However, the development of pharmacological interventions against SOD1 still needs further investigation. In this study, using ELISA-based chemical screening with wild and mutant SOD1 proteins, we screened a new small molecule, PRG-A01, which could block the misfolding/aggregation of SOD1 or TDP-43. The drug rescued the cell death induced by mutant SOD1 in human neuroblastoma cell line. Administration of PRG-A01 into the ALS model mouse resulted in significant improvement of muscle strength, motor neuron viability and mobility with extended lifespan. These results suggest that SOD1 misfolding/aggregation is a potent therapeutic target for SOD1 related ALS.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 300-300
Author(s):  
Sofiya Milman

Abstract While insulin like growth factor-1 (IGF-1) is a well-established modulator of aging and longevity in model organisms, its role in humans is less well understood. Previous ambiguities in part have been attributed to cohort characteristics and unawareness of interactions between age and IGF-1. Centenarians have emerged as an ideal model of healthy aging because they delay the onset of age-related diseases and often remain disease free for the duration of their lifespan. In cohorts of centenarians and generally healthy older adults, we demonstrated that reduced IGF-1 is associated with extended lifespan and health-span. Additionally, we confirmed that IGF-1 interacts with age to modify risk in a manner consistent with antagonistic pleiotropy: younger individuals with high IGF-1 are protected from dementia, vascular disease, diabetes, cancer, and osteoporosis, while older individuals do not exhibit IGF-1-associated protection from disease. These findings offer evidence for IGF-1 modulating health-span and lifespan in humans.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 32-33
Author(s):  
Alaattin Kaya

Abstract To understand the genetic basis and the selective forces acting on longevity, it is useful to employ ecologically diverse individuals of the same species, widely different in lifespan. This way, we may capture the experiment of Nature that modifies the genotype arriving at different lifespans. Here, we analyzed 76 ecologically diverse wild yeast isolates and discovered wide diversity of lifespan. We sequenced the genomes of these organisms and analyzed how their replicative lifespan is shaped by nutrients and transcriptional and metabolite patterns. By identifying genes, proteins and metabolites that correlate with longevity across these isolates, we found that long-lived strains elevate intermediary metabolites, differentially regulate genes involved in NAD metabolism and adjust control of epigenetic landscape through conserved, rare histone modifier. Our data further offer insights into the evolution and mechanisms by which caloric restriction regulates lifespan by modulating the availability of nutrients without decreasing fitness.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 686-687
Author(s):  
George Sutphin ◽  
Hope Dang ◽  
Luis Espejo ◽  
Raul Castro-Portuguez ◽  
Bradford Hull ◽  
...  

Abstract Aberrant kynurenine pathway metabolism is increasingly linked to aging and age-associated disease. Kynurenine metabolic activity increases with age and becomes dysregulated during various forms of age-associated pathology in humans. By manipulating one or more kynurenine pathway enzymes and metabolites, we have extended lifespan up to 40% in Caenorhabditis elegans. In particular, elevating physiological levels of the kynurenine pathway metabolite 3-hydroxyanthranilic acid (3HAA) by directly supplementing 3HAA or inhibiting the enzyme 3HAA dioxygenase (HAAO) extends C. elegans lifespan by ~30%. 3HAA delivered chronically in chow similarly extends lifespan in aged C57BL/6 mice. In ongoing work, we are investigating the mechanisms underlying the benefits of multiple kynurenine pathway interventions using tools in C. elegans, mice, and human cell culture. We have preliminary evidence for activation of broad-spectrum cellular stress response, enhanced immune function, and reduced inflammation. Among other roles, the kynurenine pathway is the sole metabolic route for de novo synthesis of nicotinamide adenine dinucleotide (NAD+) from tryptophan in Eukaryotic cells. We are examining the regulatory interaction between kynurenine metabolism and the two NAD+ recycling pathways, Salvage and Preiss-Handler, both as potential mechanistic mediators and as possible parallel targets for combined interventions with synergistic benefits in aging. We are further evaluating the impact of these interventions in several models of specific age-associated diseases, including sepsis, chronic inflammation, stroke, Alzheimer’s disease, and cancer. Finally, we are developing pharmaceutical strategies to replicate key genetic and metabolic interventions within the kynurenine pathway that can be readily translated into clinical applications.


2021 ◽  
Author(s):  
Samantha C Chomyshen ◽  
Cheng-Wei Wu

Splicing of pre-mRNA is an essential process for dividing cells and splicing defects have been linked to aging and various chronic diseases. Environmental stress has recently been shown to alter splicing fidelity and molecular mechanisms that protect against splicing disruption remains unclear. Using an in vivo RNA splicing reporter, we performed a genome-wide RNAi screen in Caenorhabditis elegans and found that protein translation suppression via silencing of the conserved initiation factor 4G (IFG-1/eIF4G) protects against cadmium-induced splicing disruption. Transcriptome analysis of an ifg-1 deficient mutant revealed an overall increase in splicing fidelity and resistance towards cadmium-induced alternative splicing compared to the wild-type. We found that the ifg-1 mutant up-regulates >80 RNA splicing regulatory genes that are controlled by the TGF-β transcription factor SMA-2. The extended lifespan of the ifg-1 mutant is partially reduced upon sma-2 depletion and completely nullified when core spliceosome genes including snr-1, snr-2, and uaf-2 are knocked down. Together, these data describe a molecular mechanism that provides resistance towards stress-induced alternative splicing and demonstrate an essential role for RNA homeostasis in promoting longevity in a translation-compromised mutant.


2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Cassandra Temple ◽  
Mair Underwood

Existing research extension has yielded varying results about whether the public’s attitudes towards life extension are positive or negative. Such differences could be accounted for by factors such as general attitudes towards developments in science and technology and exposure to fiction (such as books or movies) which generally portray life extension in an unfavorable light. This study revealed that, at least among 16 to 17 year-old High School Juniors, there was a correlation between a favorable orientation towards scientific and technological developments and positive attitudes towards life extension. Additionally, participants who had witnessed representation of life extension in fiction were less likely to hold positive attitudes towards it. The specification of the physical state in which people would live an extended lifespan in was also found to be significant in forming attitudes towards life extension. The main positive arguments about life extension were cited to be having more time, being able to be with loved ones longer, and it being beneficial towards society and humanity. However, the most significant negative arguments were that overpopulation would become a severe issue, outliving loved ones would be distressing, and abuse of power. In an attempt to change attitudes towards life extension from negative to positive, a 15-minute presentation about either the social and personal, ethical, or scientific aspect was generally ineffective in doing so. However, out of the favorable change that did occur, the presentation on the scientific feasibility of life extension was found to be the most effective.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Alaattin Kaya ◽  
Cheryl Zi Jin Phua ◽  
Mitchell Lee ◽  
Lu Wang ◽  
Alexander Tyshkovskiy ◽  
...  

To understand the genetic basis and selective forces acting on longevity, it is useful to examine lifespan variation among closely related species, or ecologically diverse isolates of the same species, within a controlled environment. In particular, this approach may lead to understanding mechanisms underlying natural variation in lifespan. Here, we analyzed 76 ecologically diverse wild yeast isolates and discovered a wide diversity of replicative lifespan. Phylogenetic analyses pointed to genes and environmental factors that strongly interact to modulate the observed aging patterns. We then identified genetic networks causally associated with natural variation in replicative lifespan across wild yeast isolates, as well as genes, metabolites and pathways, many of which have never been associated with yeast lifespan in laboratory settings. In addition, a combined analysis of lifespan-associated metabolic and transcriptomic changes revealed unique adaptations to interconnected amino acid biosynthesis, glutamate metabolism and mitochondrial function in long-lived strains. Overall, our multi-omic and lifespan analyses across diverse isolates of the same species shows how gene-environment interactions shape cellular processes involved in phenotypic variation such as lifespan.


Sign in / Sign up

Export Citation Format

Share Document