scholarly journals A fair credit-based incentive mechanism for routing in DTN-based sensor network with nodes’ selfishness

Author(s):  
Yuxin Mao ◽  
Chenqian Zhou ◽  
Ji Qi ◽  
Xudong Zhu

Abstract Due to the unguaranteed connectivity, wireless sensor networks based on delay tolerant network (DTN) are typically characterized by the opportunistic forwarding mechanism in transmission. Such a mechanism requires nodes to participate in forwarding messages actively. However, when the mechanism is used in the real world, selfish nodes will exhibit some non-cooperation behaviors. Therefore, some incentive mechanism may be designed to encourage selfish nodes. In order to solve the selfishness problem, we propose a fair credit-based incentive mechanism for routing in DTN-based sensor networks. In this mechanism, when a source node sends messages to its destination, each relay node will be rewarded with some credits. The accumulated credits are then used to evaluate the level of cooperation in the network. The selfish nodes with few credits are not able to get enough service from other nodes. With the fair incentive, all participating relays will get equal rewards by the trusted third party. In order to evaluate the proposed mechanism, we also perform some simulation, and the results demonstrate that the method can be used to support efficient routing for DTN-based sensor networks.

2019 ◽  
Author(s):  
Abhishek Verma ◽  
Virender Ranga

Relay node placement in wireless sensor networks for constrained environment is a critical task due to various unavoidable constraints. One of the most important constraints is unpredictable obstacles. Handling obstacles during relay node placement is complicated because of complexity involved to estimate the shape and size of obstacles. This paper presents an Obstacle-resistant relay node placement strategy (ORRNP). The proposed solution not only handles the obstacles but also estimates best locations for relay node placement in the network. It also does not involve any additional hardware (mobile robots) to estimate node locations thus can significantly reduce the deployment costs. Simulation results show the effectiveness of our proposed approach.


2021 ◽  
Author(s):  
Huangshui Hu ◽  
Yuxin Guo ◽  
Jinfeng Zhang ◽  
Chunhua Yin ◽  
Dong Gao

Abstract In order to solve the problem of hot spot caused by uneven energy consumption of nodes in Wireless Sensor Networks (WSNs) and reduce the network energy consumption, a novel cluster routing algorithm called CRPL for ring based wireless sensor networks using Particle Swarm Optimization (PSO) and Lion Swarm Optimization (LSO) is proposed in this paper. In CRPL, the optimal cluster head (CH) of each ring are selected by using LSO whose fitness function is composed of energy,number of neighbor nodes, number of cluster heads and distance. Moreover, PSO with a multi-objective fitness function considering distance, energy and cluster size is used to find the next hop relay node in the process of data transmission, and the optimal routing paths are obtained, so as to alleviate the hot spot problem as well as decrease the energy consumption in the routing process. The simulation results show that, compared with some existing optimization algorithms, CRPL has better effects in balancing the energy consumption of the network and prolonging the life cycle of the network.


Author(s):  
Shweta K. Kanhere ◽  
Mahesh Goudar ◽  
Vijay M. Wadhai

In this paper, we are interested in optimizing the delay of event-driven wireless sensor networks, for which events does not occur frequently. In such systems, most of the energy is consumed when the radios are on, waiting for an arrival to occur. Sleep-wake scheduling is an effective mechanism to prolong the lifetime of this energy constrained wireless sensor networks by optimization of the delay in the network but this scheme could result in substantial delays because a transmitting node needs to wait for its next-hop relay node to wake up. An attempt has been made to reduce these delays by developing new method of packet forwarding schemes, where each nod opportunistically forwards a packet to the its neighboring node that wakes up among multiple candidate nodes. In this paper, the focus is to study how to optimize the packet forwarding schemes by optimization of the expected packet-delivery delays from the sensor nodes to the sink. Based on optimized delay scheme result, we then provide a solution to the central system about how to optimally control the system parameters of the sleep-wake scheduling protocol and the packet forwarding protocol to maximize the network lifetime, subject to a constraint on the expected end-to-end packet delivery delay. Our numerical results indicate that the proposed solution can outperform prior heuristic solutions in the literature, especially under the practical scenarios where there are obstructions, e.g., a lake or a mountain, in the area of wireless sensor networks.


Sign in / Sign up

Export Citation Format

Share Document