scholarly journals A cable supporting test under impact loading based on 5G-IoT

Author(s):  
Xiaokun Sun ◽  
Zhaohua Li ◽  
Tao Hong

AbstractReliable supporting effect is of utmost important for the deep mining roadway to prevent the hazards during deep mining activities. Traditional supporting equipment are not satisfying in the absence of the energy-absorbing capacity, whereas the Constant-Resistance-Large-Deformation (CRLD) cable, which can endure a large deformation of 2 m and provide a constant resistance in the meantime, would be a reasonable choice. To verify the CRLD performance of the new cable and highlight its energy-absorbing capacity under impact loading, this paper designed an in situ blasting test in a discarded deep roadway, which is divided into four sections and reinforced by the traditional and CRLD cables, respectively. Firstly, a numerical study of the blasting testis is carried out, the CRLD cable element is proposed, based on the existing one of the FLAC3D software, and a static pullout test is simulated to verify the new element, the adapted impact loading is estimated and the dynamic calculation is performed. Furthermore, under the blasting, which releases the energy of the 1st seismic magnitude, the monitored axial forces of the cables are transmitted in real time using 5G-IoT, and the supporting effects of the two types of cables are compared. According to the numerical and experimental results, the CRLD cable is proven reliable to support the deep roadway, at least shocked by the released energy corresponding to the 1st seismic magnitude.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Zhigang Tao ◽  
Shihui Pang ◽  
Yijun Zhou ◽  
Haijiang Zhang ◽  
Yanyan Peng

A new type of energy-absorbing cable, Constant-Resistance Large Deformation cable (CRLD cable) with three different specifications, has been recently developed and tested. An effective cable should occupy the ability of absorbing deformation energy from these geodisaster loads and additionally must be able to yield with the sliding mass movements and plastic deformation over large distances at high displacement rates. The new cable mainly consists of constant-resistance casing tube and frictional cone unit that transfers the load from the slope. When experiencing a static or dynamic load and especially the load exceeding the constant resistance force (CR-F, a static friction force derived from the movement of frictional cone unit in casing tube) of CRLD cable, the frictional cone unit will move in the casing tube along the axis and absorb deformation energy, accordingly. In order to assess the performance of three different specified cables in situ, a series of field static pull tests have been performed. The results showed that the first type of CRLD cable can yield 2000 mm displacement while acting 850 kN static pull load, which is superior to that of other two types, analyzing based on the length of the displacement and the level of static pull load.


2015 ◽  
Vol 9 (1) ◽  
pp. 504-609
Author(s):  
Zhigang Tao ◽  
Haipeng Li ◽  
Haijiang Zhang ◽  
Xiulian Zhang

It is meaningful for researching on monitoring and forecasting technology of slope stability to prevent landslide disasters, especially in the water system fields. Based on the mechanical principle of interaction among sliding mass, sliding bed and monitoring cable, a new type of energy absorbing cable (called Large Deformation Cable with Constant Resistance) which can have 2000mm deformation with constant pull load of 850kN is developed. The mechanical principle of relative movement between sliding mass and sliding bed is proposed, and the multi-factor monitoring is transformed into single landslide mechanical monitoring. The relationship between sliding force of slope and pretightening force of monitoring cable is set up. According to the physical model experiment of landslide, the sliding force at the potential slip surface will change continually before the landslide. When the sliding force is greater than the shear resistance at the potential slip surface, the landslide will take place, which means the variation of sliding force at the potential slip surface will be ahead of displacement on the ground of slope. Consequently, monitoring the variation of sliding force at the potential slip surface is better than that of the displacement. Based on above principle and experiment, the system of real-time remote monitoring and forecasting for landslide disasters based on the large deformation cable with constant resistance is developed, which can realize the real-time remote monitoring warning of sliding force. Several landslides have been successfully predicted.


2020 ◽  
pp. 78-82
Author(s):  
A.Р. Evdokimov ◽  
A.N. Gromyiko ◽  
A.A. Mironov

Analytical models of static and dynamic impact elastoplastic deformation of tubular energy-absorbing elements constituting a tubular plastic shock absorber are proposed. The developed models can be used for the calculation and design of these shock absorbers. Keywords static and dynamic elastoplastic deformation, mathematical modeling, tubular energy-absorbing element, tubular plastic shock absorber, impact loading. [email protected]


2014 ◽  
Vol 580-583 ◽  
pp. 238-242
Author(s):  
Ri Cheng Liu ◽  
Bang Shu Xu ◽  
Bo Li ◽  
Yu Jing Jiang

Mechanical behaviors of pile-soil effect and anchor-soil effect are significantly important in supporting engineering activities of foundation pit. In this paper, finite difference method (FDM) was utilized to perform the numerical simulation of pile-anchor system, composed of supporting piles and pre-stressed anchor cables. Numerical simulations were on the basis of the foundation pit of Jinan’s West Railway Station, and 3D simulation analysis of foundation pit has been prepared during the whole processes of excavation, supporting and construction. The paper also analyzed the changes of bending moments of piles and axial forces of cables, and discussed mechanical behaviors of pile-anchor system, through comparisons with field monitoring. The results show that the parameters concluding vertical gridding’s number, cohesion of pile and soil, and pile stiffness have robust influences on supporting elements’ behaviors. Mechanical behaviors of supporting pile and axial forces of anchor cable changed dramatically, indicating that the potential failure form was converted from toppling failure to sliding failure.


2021 ◽  
Vol 28 (2) ◽  
pp. 572-581 ◽  
Author(s):  
Tong-bin Zhao ◽  
Ming-lu Xing ◽  
Wei-yao Guo ◽  
Cun-wen Wang ◽  
Bo Wang

2016 ◽  
Vol 715 ◽  
pp. 147-152
Author(s):  
Ryota Haruna ◽  
Takayuki Kusaka ◽  
Ryota Tanegashima ◽  
Junpei Takahashi

A novel experimental method was proposed for characterizing the energy absorbing capability of composite materials during the progressive crushing process under impact loading. A split Hopkinson pressure bars system was employed to carry out the progressive crushing tests under impact loading. The stress wave control technique was used to avoid the inhomogeneity of dynamic stress field in the specimen. The progressive crushing behavior was successfully achieved by using a coupon specimen and anti-buckling fixtures. With increasing strain rate, the absorbed energy during the crushing process slightly decreased, whereas the volume of the damaged part clearly increased regardless of material type. Consequently, the energy absorbing capability decreased with increasing loading rate. The effects of material composition, such as fiber type, matrix type and fabric pattern, on energy absorbing capability were also investigated by using the proposed method.


Author(s):  
X. W. Zhang ◽  
T. X. Yu

AbstractBy means of ping-pong balls, the dynamic buckling behaviours of thin-walled spherical shells under impact loading are studied both experimentally and numerically. First, the quasi-static tests were conducted on an MTS tester, in which the ball was compressed onto a PMMA plate. Apart from the force-displacement relationship, the evolution of the contact zone between the ball and the plate was obtained by a digital camera. In the impact tests, ping-pong balls were accelerated by an air-gun and then impinged onto a rigid plate with the velocity ranging 10–45 m


Sign in / Sign up

Export Citation Format

Share Document