scholarly journals Transitioning to a sustainable development framework for bioenergy in Malaysia: policy suggestions to catalyse the utilisation of palm oil mill residues

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Siti Fatihah Salleh ◽  
Mohd Eqwan Mohd Roslan ◽  
Adlansyah Abd Rahman ◽  
Abdul Halim Shamsuddin ◽  
Tuan Ab Rashid Tuan Abdullah ◽  
...  

Abstract Background The global commitment to climate change mitigation enforces the worldwide development of renewable energy sources. Therefore, various studies have investigated the growth of renewable energy in Malaysia, most commonly based on biogas and hydropower. In this article, the dynamics of Malaysia’s renewable energy development is critically examined by using the latest official national reports and other reliable resources. Results The study reveals the influencing factors that shape renewable energy growth in a developing country endowed with substantial biomass resources, such as Malaysia. Likewise, it evaluates the evolution of renewable energy in the electricity sector. In 2017, renewable energy represented about 3.5% of the Malaysian electricity generation mix with 1122 MW of installed capacity. A closer look into the renewable energy resources, i.e. biomass, biogas, solar and small hydro power, revealed that over 47% of the grid-connected power generation came from solar photovoltaic (PV) energy. While solar PV capacity continues to accelerate, the development of other renewable resources, especially biomass, is seeing growth at a significantly slower pace. This article investigates the underlying causes of the skewed development rate as well as the potential strategies that may be adopted to promote a diversification of renewable energy resources. In light of this, introduction of a new national bioenergy policy is proposed, through which four essential programmes could be implemented: (i) enhanced bioenergy conversion efficiency and waste management, (ii) biomass co-firing in coal power plants, (iii) conversion of biogas to biomethane and bio-compressed natural gas (bio-CNG), (iv) large-scale biomass power plants. A total of 4487 MW of additional power could be connected to the grid upon successful implementation of a large-scale biomass power plant programme. Conclusions The establishment of a comprehensive and inclusive national bioenergy policy will lead towards a sustainable future of renewable energy development in Malaysia.

Author(s):  
Manoj Kumar Singh ◽  
Bharat Raj Singh

India has a vast supply of renewable energy resources, and it has one of the largest programs in the world for deploying renewable energy products and systems. Indeed, it is the only country in the world to have an exclusive ministry for renewable energy development, the Ministry of Non-Conventional Energy Sources (MNES). Since its formation, the Ministry has launched one of the world's largest and most ambitious programs on renewable energy. Based on various promotional efforts put in place by MNES, significant progress is being made in power generation from renewable energy sources. India emerged in 2008 as an aspiring producer of solar PV. Both National and State Governments announced new policies to support solar PV manufacturing in special economic zones, including capital investment subsidies of 20 percent. These policies led to USD 18 billion in new solar PV manufacturing investment plans or proposals by a large number of companies. We know where the non renewable energies – coal, oil and gas – are located and how these fuels are transported, combusted, and the power transmitted throughout the country over the power grid. Now, let's look at the renewable energies hydro, solar, wind and biomass. According to the Energy Information administration (EIA) the annual average increase will be about 4.0 percent from 2002 to 2025. The projected growth in net electricity consumption for emerging market economies is driven in large part by Gross Domestic Product (GDP) and population growth assumption. It makes sense to the authors that all efforts and investment should consider accelerating these sustainable energy resources before committing to the same fossil fuel path as western nations. The fossil fuel strategy will surely bring price volatility from dwindling supplies and added pollution from carbon combustion. Tapping India's wind, solar, biomass, and hydro could bring high quality jobs from a domestic resource. Renewable energy is the measure of the development of a nation like India extensive development of the renewable energy resources on the Indian subcontinent through MNES booming economic growth, rapid Industrialization and high standard of living of global population demand more and more energy in different forms.


2007 ◽  
Vol 18 (3-4) ◽  
pp. 421-430 ◽  
Author(s):  
Md. Tarik-ul-Islam ◽  
Sara Ferdousi

In Bangladesh, annual per capita energy consumption is approximately 200 KgOE3, which is among the lowest in the world. Presently, 70% of the population does not have access to electricity in Bangladesh (GoB, 2004). The average system loss is 20.97% (GoB, 2006). The demand for power is estimated to increase 300 MW annually (GoB, 1996a). In contrast, concerns have been raised about the conventional energy production from fossil fuels that significantly contributes to environmental degradation at the local, regional and global levels. This situation calls for adoption of sustainable energy strategies that permeate every level of the economy and can provide rural dwellers with the services that they want and need. With this backdrop, Bangladesh has been experiencing a gradual shift towards exploring renewable energy resources as a means to fuel rural development in the off-grid areas. The country is endowed with abundant renewable energy resources. The Local Government Engineering Department (LGED), with its mandate for sustainable rural development has embarked on a program for demonstration and transfer of renewable energy technologies in the off-grid rural areas. The project “Sustainable Rural Energy (SRE)‘ has been conceived within the overall framework of ‘Sustainable Environment Management Programme (SEMP)’ with financial support from United Nations Development Programme (UNDP). This project has already completed a number of renewable energy installations demonstrating diversified community applications of these technologies for livelihood and socio-economic improvement of the people living in the remote off-grid villages. The lessons learned from these demonstration plants reveal that, with careful forward planning, renewable energy can provide far-reaching economic and social benefits to people living in remote rural areas in Bangladesh. The private sectors and NGOs (Non-government organizations) have started to take part in the process of renewable energy development with great promise and enthusiasm. However, the process encounters policy, institutional and technological barriers, which are critical for continued development in this sector.


2021 ◽  
Vol 13 (6) ◽  
pp. 3349
Author(s):  
Riaz Uddin ◽  
Abdurrahman Javid Shaikh ◽  
Hashim Raza Khan ◽  
Muhammad Ayaz Shirazi ◽  
Athar Rashid ◽  
...  

To a great extent, Pakistan and Turkey rely on imported fossil fuels to meet their energy demands. Pakistan is moving in the right direction, placing focus on renewable energy resources in its current infrastructure in order to address the energy shortage. Several projects (e.g., wind power and solar PV (photovoltaic) technologies) are operational or under development; they are intended to reduce energy challenges in Pakistan. The new government in Pakistan aims to increase the share of renewable energy in total power generation to 30% by 2030. On the other hand, Turkey surpasses Pakistan in renewable energy resources; for example, there are 186 operational wind energy power plants across the country. In addition, Turkey utilizes solar energy—mainly for residential usage. Turkey’s Vision 2023 energy agenda aims to supply 30% of their power demands from modern renewable energy resources. Turkey has implemented solar PV, solar buildings, wind power plants, geothermal energy resources, and biomass technology for heating, cooling and electricity generation. At present, Turkey’s supply to meet energy demands in the country is 56% fossil fuel energy resources and 44% renewable energy, including hydropower. Accessible details reveal that geothermal energy resources have been continuously neglected in Pakistan by the Ministry of Energy (power division); this is in contrast to the Turkish case, in which utilization of geothermal energy resources for heating and cooling purposes is efficient. With all the facts and figures under consideration, in this paper, comparative analyses are performed which reveal that the production of electricity from geothermal energy technologies is lower than the massive potential in both countries. Recommendations are made for important policies to promote renewable energy technologies, which could effectively support energy decentralization by providing electricity to rural areas and the national grid.


2020 ◽  
pp. 165-171
Author(s):  
Iryna Hryhoruk

Exhaustion of traditional energy resources, their uneven geographical location, and catastrophic changes in the environment necessitate the transition to renewable energy resources. Moreover, Ukraine's economy is critically dependent on energy exports, and in some cases, the dependence is not only economic but also political, which in itself poses a threat to national security. One of the ways to solve this problem is the large-scale introduction and use of renewable energy resources, bioenergy in particular. The article summarizes and offers methods for assessing the energy potential of agriculture. In our country, a significant amount of biomass is produced every year, which remains unused. A significant part is disposed of due to incineration, which significantly harms the environment and does not allow earning additional funds. It is investigated that the bioenergy potential of agriculture depends on the geographical distribution and varies in each region of Ukraine. Studies have shown that as of 2019 the smallest share in the total amount of conventional fuel that can be obtained from agricultural waste and products suitable for energy production accounts for Zakarpattya region - 172.5 thousand tons. (0.5% of the total) and Chernivtsi region - 291.3 thousand tons. (0.9%). Poltava region has the greatest potential - 2652.2 thousand tons. (7.8%) and Vinnytsia - 2623.7 thousand tons. (7.7%). It should be noted that the use of the energy potential of biomass in Ukraine can be called unsatisfactory. The share of biomass in the provision of primary energy consumption is very small. For bioenergy to occupy its niche in the general structure of the agro-industrial complex, it is necessary to develop mechanisms for its stimulation. In addition, an effective strategy for the development of the bioenergy sector of agriculture is needed. The article considers the general energy potential of agriculture, its indicative structure. The analysis is also made in terms of areas. In addition, an economic assessment of the possible use of existing potential is identified.


2005 ◽  
Vol 9 (3) ◽  
pp. 15-23 ◽  
Author(s):  
Fajik Begic ◽  
Anes Kazagic

Along with the current processes of restructuring of Energy power system of Bosnia and Herzegovina, liberalization of the electricity market, and modernization of the existing power plants, Bosnia and Herzegovina must turn to the utilization of renewable resources in reason able dynamics as well. Respecting this policy, the initial Valuation of the potential of renewable erg resources in Bosnia and Herzegovina is per formed. The methodology of evaluation of wind energy utilization is presented in this paper, as well as some other aspects of utilization of the renewable energy resources in Bosnia and Herzegovina. Implementation of selected projects should improve sustainability of energy power production in Bosnia and Herzegovina, by reducing the total emission of carbon dioxide originated from energy power system of Bosnia and Herzegovina.


Author(s):  
Baba Dzhabrailovich Babaev ◽  
Vladimir Panchenko ◽  
Valeriy Vladimirovich Kharchenko

The main objective of the work is to develop principles for the formation of the optimal composition of the energy complex from all the given power plants based on renewable energy sources for an autonomous consumer, taking into account the variable energy loads of the consumer, changing climatic conditions and the possibility of using local fuel and energy resources. As a result of solving this optimization problem, in addition to the optimal configuration of the power complex, it is also necessary to solve the problem of optimizing the joint operation of different types of power plants from the selected optimal configuration, that is, it is necessary to determine the optimal modes of operation of power plants and the optimal share of their participation in providing consumers at every moment in time. A numerical method for analyzing and optimizing the parameters and operating mode of the energy complex with the most accurate consideration of the schedule of changes in consumer load and software that automates the solution of this optimization problem are also presented.


2012 ◽  
Vol 1 (4) ◽  
pp. 56-69
Author(s):  
Farzin Shama ◽  
Gholam Hossein Roshani ◽  
Sobhan Roshani ◽  
Arash Ahmadi ◽  
Saber Karami

Producing non-polluting renewable energy in large scale is essential for sustainability of future developments in industry and human society. Among renewable energy resources, solar energy takes a special place because of its free accessibility and affordability. However, the optimization of its production and consumption processes poses important concerns, essentially in the affordability issue. This paper investigates several optimization and performance issues regarding solar panel converters using two-axis controlled solar tracer that has been practically implemented in comparison with fixed converter panels. Results shown in tables and graphs demonstrate clearly the advantages and disadvantages of the methods. Based on these results, large scale solar power plants are being suggested to be equipped with similar devices.


2020 ◽  
pp. 182-219
Author(s):  
Aliaksei PATONIA ◽  

Iceland — an independent republic — and Greenland — an autonomous country within Denmark — represent two nations with similar geographical, economic, and historical backgrounds. Isolated from the continents, both are significantly affected by an adverse climate, making their economies dependent on trade and import. Nevertheless, despite their similarities, their national energy patterns differ substantially. Specifically, Iceland covers most of its energy mix with local renewables, whereas Greenland meets most of the energy demand with imported hydrocarbons. This paper investigates the reasons for Greenland lagging behind Iceland in terms of developing renewable energy resources. It hypothesises that, apart from the commonly-mentioned geographical, institutional, and cultural factors, the difference in social capital level has significantly contributed to the countries’ divergent energy strategies. In this sense, Iceland’s higher social capital stock stimulates its renewable power progress, whereas Greenland’s lower social capital level hampers it. To examine this hypothesis, the article constructs a ‘social capital tripod’, which assumes specific geographical, institutional, and cultural factors to be linked to renewable energy development through social capital. The findings demonstrate that Greenland, being dependent on hydrocarbon import, has a significantly lower expected level of social capital than Iceland, which runs mostly on renewables, therefore generally aligning with the research hypothesis.


2013 ◽  
pp. 335-347
Author(s):  
Farzin Shama ◽  
Gholam Hossein Roshani ◽  
Sobhan Roshani ◽  
Arash Ahmadi ◽  
Saber Karami

Producing non-polluting renewable energy in large scale is essential for sustainability of future developments in industry and human society. Among renewable energy resources, solar energy takes a special place because of its free accessibility and affordability. However, the optimization of its production and consumption processes poses important concerns, essentially in the affordability issue. This paper investigates several optimization and performance issues regarding solar panel converters using two-axis controlled solar tracer that has been practically implemented in comparison with fixed converter panels. Results shown in tables and graphs demonstrate clearly the advantages and disadvantages of the methods. Based on these results, large scale solar power plants are being suggested to be equipped with similar devices.


Author(s):  
Khaled Nusair ◽  
Lina Alhmoud

Over the last decades, the energy market around the world has reshaped due to accommodating the high penetration of renewable energy resources. Although renewable energy sources have brought various benefits, including low operation cost of wind and solar PV power plants, and reducing the environmental risks associated with the conventional power resources, they have imposed a wide range of difficulties in power system planning and operation. Naturally, classical optimal power flow (OPF) is a nonlinear problem. Integrating renewable energy resources with conventional thermal power generators escalates the difficulty of the OPF problem due to the uncertain and intermittent nature of these resources. To address the complexity associated with the process of the integration of renewable energy resources into the classical electric power systems, two probability distribution functions (Weibull and lognormal) are used to forecast the voltaic power output of wind and solar photovoltaic, respectively. Optimal power flow, including renewable energy, is formulated as a single-objective and multi-objective problem in which many objective functions are considered, such as minimizing the fuel cost, emission, real power loss, and voltage deviation. Real power generation, bus voltage, load tap changers ratios, and shunt compensators values are optimized under various power systems’ constraints. This paper aims to solve the OPF problem and examines the effect of renewable energy resources on the above-mentioned objective functions. A combined model of wind integrated IEEE 30-bus system, solar PV integrated IEEE 30-bus system, and hybrid wind and solar PV integrated IEEE 30-bus system are performed using the equilibrium optimizer technique (EO) and other five heuristic search methods. A comparison of simulation and statistical results of EO with other optimization techniques showed that EO is more effective and superior.


Sign in / Sign up

Export Citation Format

Share Document