scholarly journals Species richness, phylogenetic diversity and phylogenetic structure patterns of exotic and native plants along an elevational gradient in the Himalaya

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Kumar Manish

Abstract Background So far, macroecological studies in the Himalaya have mostly concentrated on spatial variation of overall species richness along the elevational gradient. Very few studies have attempted to document the difference in elevational richness patterns of native and exotic species. In this study, this knowledge gap is addressed by integrating data on phylogeny and elevational distribution of species to identify the variation in species richness, phylogenetic diversity and phylogenetic structure of exotic and native plant species along an elevational gradient in the Himalaya. Results Species distribution patterns for exotic and native species differed; exotics tended to show maximum species richness at low elevations while natives tended to predominate at mid-elevations. Native species assemblages showed higher phylogenetic diversity than the exotic species assemblages over the entire elevational gradient in the Himalaya. In terms of phylogenetic structure, exotic species assemblages showed majorly phylogenetic clustering while native species assemblages were characterized by phylogenetic overdispersion over the entire gradient. Conclusions The findings of this study indicate that areas with high native species richness and phylogenetic diversity are less receptive to exotic species and vice versa in the Himalaya. Species assemblages with high native phylogenetic overdispersion are less receptive to exotic species than the phylogenetically clustered assemblages. Different ecological processes (ecological filtering in case of exotics and resource and niche competition in case of natives) may govern the distribution of exotic and native species along the elevational gradient in the Himalaya.

2004 ◽  
Vol 52 (5) ◽  
pp. 597 ◽  
Author(s):  
J. B. Kirkpatrick

Few temporal studies document vegetation change in Australian temperate grassy woodlands. Floristic and structural data were collected from 68 randomly located sites in the Queens Domain, an urban grassy woodland remnant, in 1974, 1984, 1994 and 2000 and a search made for rare species. Species of conservation significance were concentrated at highly disturbed sites, whereas vegetation types of conservation significance decreased in area as a result of increases in the numbers of Allocasuarina verticillata, which caused a change in many unmown areas from Eucalyptus viminalis grassy woodland to E. viminalis–A. verticillata woodland/forest or A. verticillata open/closed forest. Structural changes were associated with changes in species composition and an increase in native-species richness. Increases in tree cover occurred where fires were most frequent, possibly as a result of the lack of mammalian herbivores. The frequencies of herbs and annual grasses were strongly affected by precipitation in the month of sampling. Half of the species that showed a consistent rise or fall through time were woody plants, approximately twice the number expected. In the dataset as a whole, species-richness variables were largely explained by varying combinations of variables related to moisture availability, altitude and the incidence of mowing. The strongest influences on species composition were the same, although slope and time since the last fire also contributed to multiple regression and generalised linear models. Compositional stability was positively related to native-species richness, whereas high levels of exotic-species richness occurred at both low and high levels of native-species richness. The maintenance of native-plant biodiversity on the Domain requires such counterintuitive measures as the maintenance of exotic trees and the control of native trees, demonstrating the contingencies of conservation management in fragmented vegetation that consists of a mixture of native and exotic species.


Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 426 ◽  
Author(s):  
David J. Gibson ◽  
Lindsay A. Shupert ◽  
Xian Liu

Control of invasive exotic species in restorations without compromising the native plant community is a challenge. Efficacy of exotic species control needs to consider collateral effects on the associated plant community. We asked (1) if short-term control of a dominant exotic invasive, Lespedeza cuneata in grassland restorations allows establishment of a more diverse native plant community, and (2) if control of the exotic and supplemental seed addition allows establishment of native species. A manipulative experiment tested the effects of herbicide treatments (five triclopyr and fluroxypyr formulations plus an untreated control) and seed addition (and unseeded control) on taxonomic and phylogenetic diversity, and community composition of restored grasslands in three sites over three years. We assessed response of L. cuneata through stem density counts, and response of the plant community through estimates of canopy cover. Herbicide treatments reduced the abundance of the exotic in the first field season leading to a less dispersed community composition compared with untreated controls, with the exotic regaining dominance by the third year. Supplemental seed addition did not provide extra resistance of the native community to reinvasion of the exotic. The communities were phylogenetically over-dispersed, but there was a short-term shift to lower phylogenetic diversity in response to herbicides consistent with a decrease in biotic filtering. Native plant communities in these grassland restorations were resilient to short-term reduction in abundance of a dominant invasive even though it was insufficient to provide an establishment window for native species establishment.


2020 ◽  
Author(s):  
Alke Voskamp ◽  
Christian Hof ◽  
Matthias F. Biber ◽  
Thomas Hickler ◽  
Aidin Niamir ◽  
...  

AbstractOngoing climate change is a major threat to biodiversity and impacts on species distributions and abundances are already evident. Heterogenous responses of species due to varying abiotic tolerances and dispersal abilities have the potential to further amplify or ameliorate these impacts through changes in species assemblages. Here we investigate the impacts of climate change on terrestrial bird distributions and, subsequently, on species richness as well as on different aspects of phylogenetic diversity of species assemblages across the globe. We go beyond previous work by disentangling the potential impacts on assemblage phylogenetic diversity of species gains vs. losses under climate change and compare the projected impacts to randomized assemblage changes.We show that climate change might not only affect species numbers and composition of global species assemblages but could also have profound impacts on assemblage phylogenetic diversity, which, across extensive areas, differ significantly from random changes. Both the projected impacts on phylogenetic diversity and on phylogenetic structure vary greatly across the globe. Projected increases in the evolutionary history contained within species assemblages, associated with either increasing phylogenetic diversification or clustering, are most frequent at high northern latitudes. By contrast, projected declines in evolutionary history, associated with increasing phylogenetic over-dispersion or homogenisation, are projected across all continents.The projected widespread changes in the phylogenetic structure of species assemblages show that changes in species richness do not fully reflect the potential threat from climate change to ecosystems. Our results indicate that the most severe changes to the phylogenetic diversity and structure of species assemblages are likely to be caused by species range shifts rather than range reductions and extinctions. Our findings highlight the importance of considering diverse measures in climate impact assessments and the value of integrating species-specific responses into assessments of entire community changes.


2010 ◽  
Vol 19 (4) ◽  
pp. 490 ◽  
Author(s):  
Erich K. Dodson ◽  
David W. Peterson ◽  
Richy J. Harrod

Slope stabilisation treatments like mulching and seeding are used to increase soil cover and reduce runoff and erosion following severe wildfires, but may also retard native vegetation recovery. We evaluated the effects of seeding and fertilisation on the cover and richness of native and exotic plants and on individual plant species following the 2004 Pot Peak wildfire in Washington State, USA. We applied four seeding and three fertilisation treatments to experimental plots at eight burned sites in spring 2005 and surveyed vegetation during the first two growing seasons after fire. Seeding significantly reduced native non-seeded species richness and cover by the second year. Fertilisation increased native plant cover in both years, but did not affect plant species richness. Seeding and fertilisation significantly increased exotic cover, especially when applied in combination. However, exotic cover and richness were low and treatment effects were greatest in the first year. Seeding suppressed several native plant species, especially disturbance-adapted forbs. Fertilisation, in contrast, favoured several native understorey plant species but reduced tree regeneration. Seeding, even with native species, appears to interfere with the natural recovery of native vegetation whereas fertilisation increases total plant cover, primarily by facilitating native vegetation recovery.


1998 ◽  
Vol 4 (1) ◽  
pp. 21 ◽  
Author(s):  
Max Abensperg-Traun ◽  
Lyn Atkins ◽  
Richard Hobbs ◽  
Dion Steven

Exotic plants are a major threat to native plant diversity in Australia yet a generic model of the invasion of Australian ecosystems by exotic species is lacking because invasion levels differ with vegetation/soil type and environmental conditions. This study compared relative differences in exotic species invasion (percent cover, spp. richness) and the species richness of herbaceous native plants in two structurally very similar vegetation types, Gimlet Eucalyptus salubris and Wandoo E. capillosa woodlands in the Western Australian wheatbelt. For each woodland type, plant variables were measured for relatively undisturbed woodlands, woodlands with >30 years of livestock grazing history, and woodlands in road-verges. Grazed and road-verge Gimlet and Wandoo woodlands had significantly higher cover of exotic species, and lower species richness of native plants, compared with undisturbed Gimlet and Wandoo. Exotic plant invasion was significantly greater in Gimlet woodlands for both grazed (mean 78% cover) and road-verge sites (mean 42% cover) than in comparable sites in Wandoo woodlands (grazed sites 25% cover, road-verge sites 19% cover). There was no significant difference in the species richness of exotic plants between Wandoo and Gimlet sites for any of the three situations. Mean site richness of native plants was not significantly different between undisturbed Wandoo and undisturbed Gimlet woodlands. Undisturbed woodlands were significantly richer in plant species than grazed and road-verge woodlands for both woodland types. Grazed and road-verge Wandoo sites were significantly richer in plant species than communities in grazed and road-verge Gimlet. The percent cover of exotics was negatively correlated with total (native) plant species richness for both woodland types (Wandoo r = ?0.70, Gimlet r = ?0.87). Of the total native species recorded in undisturbed Gimlet, 83% and 61% were not recorded in grazed and road-verge Gimlet, respectively. This compared with 40% and 33% for grazed and road-verge Wandoo, respectively. Grazed Wandoo and grazed Gimlet sites had significantly fewer native plant species than did road-verge Wandoo and road-verge Gimlet sites. Ecosystem implications of differential invasions by exotic species, and the effects of grazing (disturbance) and other factors influencing susceptibility to exotic plant invasion (landscape, competition and allelopathy) on native species decline are discussed. Exclusion of livestock and adequate methods of control and prevention of further invasions by exotic plants are essential requirements for the conservation of these woodland systems.


2015 ◽  
Vol 40 (1) ◽  
pp. 112-134 ◽  
Author(s):  
Sébastien Larrue ◽  
Jean-François Butaud ◽  
Pascal Dumas ◽  
Stéphane Ballet

Which abiotic factors influence the number of native plant species on remote atolls is an important question to understand better the spatial pattern of the species observed on these low and vulnerable coral islands. However, this issue is still very poorly documented, often due to human degradation, partial botanical surveys or the difficult geographic access of remote atolls for researchers. The remote atolls of Eastern Polynesia, which are among the most isolated in the world, are of great interest for studies of native species’ distribution due to their isolation, low human density and urbanisation. In this study, we selected 49 remote atolls of Eastern Polynesia with complete botanical surveys to test the relative influence of eight abiotic factors on native plant species richness (i.e. indigenous and endemic species). Abiotic factors used as potential predictors included atoll area (km2), shoreline length (km), atoll elevation (m) and index of isolation (UNEP), but also the coastal index of the atoll ( Ic), the distance to the nearest similar atoll (km), the distance to the nearest large volcanic island ≥ 1000 km2 (here, Tahiti as a potential stepping-stone island) and the distance to the nearest raised atoll ≥ 15 m a.s.l. (here, Makatea or Henderson as a potential refugium during sea-level highstands). Spearman’s rank correlation, linear regression analysis and frequency diagrams were used to assess the relative influence of these factors on native species richness. No relationship was found between the species richness and the index of isolation or the distance to the nearest similar atoll. Atoll area and distance to the nearest raised atoll of Makatea explained 47.1% and 40%, respectively, of the native species richness variation observed on the remote atolls. The distance to the volcanic island of Tahiti and the coastal index explained 36.9% and 27.3% of the variation, while elevation and shoreline length explained 23.3% and 18.4% of the variation, respectively. Native species richness on the atolls surveyed increased with the increasing atoll area, elevation and shoreline length, but decreased with the increasing distance to the nearest raised atoll of Makatea and the large volcanic island of Tahiti. This supports the view that the spatial pattern of native species richness observed on the remote atolls was strongly influenced by (i) atoll area but also by (ii) the distance to the raised atoll of Makatea, and (iii) the distance to the volcanic island of Tahiti. This finding suggests that the raised atoll may be viewed as a refugium during sea-level highstands while the large volcanic island played the role of stepping-stone island, both islands influencing the dispersal of native species on remote atolls and attenuating the isolation effect in the study area.


2006 ◽  
Vol 28 (1) ◽  
pp. 27 ◽  
Author(s):  
A. C. Grice

Most parts of the Australian rangelands are at risk of invasion by one or more species of non-native plants. The severity of current problems varies greatly across the rangelands with more non-native plant species in more intensively settled regions, in climatic zones that have higher and more reliable rainfall, and in wetter and more fertile parts of rangeland landscapes. Although there is quantitative evidence of impacts on either particular taxonomic groups or specific ecological processes in Australian rangelands, a comprehensive picture of responses of rangeland ecosystems to plant invasions is not available. Research has been focused on invasive species that are perceived to have important effects. This is likely to down play the significance of species that have visually less dramatic influences and ignore the possibility that some species could invade and yet have negligible consequences. It is conceivable that most of the overall impact will come from a relatively small proportion of invasive species. Impacts have most commonly been assessed in terms of plant species richness or the abundance of certain groups of vertebrates to the almost complete exclusion of other faunal groups. All scientific studies of the impacts of invasive species in Australian rangelands have focused on the effects of individual invasive species although in many situations native communities are under threat from a complex of interacting weed species. Invasion by non-native species is generally associated with declines in native plant species richness, but faunal responses are more complex and individual invasions may be associated with increase, decrease and no-change scenarios for different faunal groups. Some invasive species may remain minor components of the vegetation that they invade while others completely dominate one stratum or the vegetation overall.


2020 ◽  
Author(s):  
Hongwei Xu ◽  
Zemin Ai ◽  
Qing Qu ◽  
Minggang Wang ◽  
Guobin Liu ◽  
...  

Abstract Background: Exotic species invasions represent important causes of biodiversity loss in ecosystems. Yet, knowledge remains limited on the invasion advantage of exotic species (invasibility of native plants) and the ability of native species to recover following invasions at different stages of succession.Results: We selected three grasses (Setaria viridis, Artemisia gmelinii, and Bothriochloa ischaemum) representing early, middle, and late successional species, respectively, and an exotic species (Panicum virgatum) from a stable grassland community. Four types of field soil were collected to treat the three early, middle, and later successional species, plus the exotic species. We examined the invasion ability of the exotic species on native communities and the recoverability of these communities following invasion across succession. We compared the performance of the four plant species grown in their “own” and “other” soils in a 2-year glasshouse experiment. Here we show that exotic species performed better in soils of early and mid-successional species, owing to higher soil nutrients and microbial residues, than in the soil of later successional species. In the soil of exotic species, early and mid-successional species exhibited poor growth, while that of later successional species was unchanged.Conclusions: Our study demonstrated that soil nutrients and microbial residues create a soil legacy regulating the invasibility and recoverability (or resilience) of native plant communities and how it changed with vegetation succession.


NeoBiota ◽  
2021 ◽  
Vol 65 ◽  
pp. 1-21
Author(s):  
Katherine Duchesneau ◽  
Lisa Derickx ◽  
Pedro M. Antunes

Since 2007, more people in the world live in urban than in rural areas. The development of urban areas has encroached into natural forest ecosystems, consequently increasing the ecological importance of parks and fragmented forest remnants. However, a major concern is that urban activities have rendered urban forests susceptible to non-native species incursions, making them central entry sites where non-native plant species can establish and spread. We have little understanding of what urban factors contribute to this process. Here we use data collected by citizen scientists to determine the differential impacts of spatial and urban factors on non-native plant introductions in urban forests. Using a model city, we mapped 18 urban forests within city limits, and identified all the native and non-native plants present at those sites. We then determined the relative contribution of spatial and socioeconomic variables on the richness and composition of native and non-native plant communities. We found that socioeconomic factors rather than spatial factors (e.g., urban forest area) were important modulators of overall or non-native species richness. Non-native species richness in urban forest fragments was primarily affected by residential layout, recent construction events, and nearby roads. This demonstrates that the proliferation of non-native species is inherent to urban activities and we propose that future studies replicate our approach in different cities to broaden our understanding of the spatial and social factors that modulate invasive species movement starting in urban areas.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2208 ◽  
Author(s):  
Thomas K. Lameris ◽  
Joseph R. Bennett ◽  
Louise K. Blight ◽  
Marissa Giesen ◽  
Michael H. Janssen ◽  
...  

We used 116 years of floral and faunal records from Mandarte Island, British Columbia, Canada, to estimate the indirect effects of humans on plant communities via their effects on the population size of a surface-nesting, colonial seabird, the Glaucous-winged gull (Larus glaucescens). Comparing current to historical records revealed 18 extirpations of native plant species (32% of species historically present), 31 exotic species introductions, and one case of exotic introduction followed by extirpation. Contemporary surveys indicated that native species cover declined dramatically from 1986 to 2006, coincident with the extirpation of ‘old-growth’ conifers. Because vegetation change co-occurred with an increasing gull population locally and regionally, we tested several predictions from the hypothesis that the presence and activities of seabirds help to explain those changes. Specifically, we predicted that on Mandarte and nearby islands with gull colonies, we should observe higher nutrient loading and exotic plant species richness and cover than on nearby islands without gull colonies, as a consequence of competitive dominance in species adapted to high soil nitrogen and trampling. As predicted, we found that native plant species cover and richness were lower, and exotic species cover and richness higher, on islands with versus without gull colonies. In addition, we found that soil carbon and nitrogen on islands with nesting gulls were positively related to soil depth and exotic species richness and cover across plots and islands. Our results support earlier suggestions that nesting seabirds can drive rapid change in insular plant communities by increasing nutrients and disturbing vegetation, and that human activities that affect seabird abundance may therefore indirectly affect plant community composition on islands with seabird colonies.


Sign in / Sign up

Export Citation Format

Share Document