scholarly journals Impacts of peat on nitrogen conservation and fungal community composition dynamics during food waste composting

2020 ◽  
Vol 63 (1) ◽  
Author(s):  
Zaihua He ◽  
Qiang Li ◽  
Xiaoyi Zeng ◽  
Kai Tian ◽  
Xiangshi Kong ◽  
...  

Abstract Peat, as a heterogeneous mixture of decaying plant debris and microbial residues, has been widely used in many fields. However, little research focused on the impact of peat addition on food waste composting. To fill this gap, a composting experiment of food waste mixed with five varying percent peat 0, 5, 10, 15, and 20% (w/w, dry weight) was designed to investigate the effect of different dosages of peat on nitrogen conservation, physiochemical parameters, and fungal community dynamics during composting. The results showed that adding peat elevated the peak temperature of composting, lowered final pH, reduced ammonia emissions and increased the final total nitrogen content. Compared to control, adding 5, 10, 15, and 20% peat decreased ammonia emissions by 1.91, 10.79, 23.73, and 18.26%, respectively, during 42 days of composting. Moreover, peat addition increased fungal community diversity especially during maturation phase. The most two abundant phyla were Basidiomycota and Ascomycota in all treatments throughout the composting process. At the end of composting, in treatments with adding 10 and 15% peat, the richest fungi were Scedosporium spp. and Coprinopsis spp., respectively. Simultaneously, canonical correlation analyses showed that pH, moisture content, and seed germination index had significant association with fungal community composition. The study also showed that fungal community and nitrogen conservation had no direct obvious relation during composting. Overall, the results suggest that the addition of peat could efficiently enhance nitrogen conservation through reduction of ammonia emissions and 15% peat addition is the optimal formula for food waste composting.

Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1917
Author(s):  
Tianma Yuan ◽  
Haihan Zhang ◽  
Qiaoli Feng ◽  
Xiangyu Wu ◽  
Yixin Zhang ◽  
...  

Fungi are an important, yet often, neglected component of the aquatic microflora, and is responsible for primary decomposition and further processing of organic matter. By comparison, the ecological roles of terrestrial fungi have been well-studied, but the diversity and function of fungi that populate aquatic environments remain poorly understood. Here, the impact of urbanization on fungal diversity and community composition in the canal system of Suzhou was assessed by sequencing the internal transcribed spacer 1 (ITS1) region of the rRNA operon. It was amplified from environmental DNA that has been extracted from water samples and pre-deployed decomposing leaves collected from nine sampling locations (high, medium and low urbanization) over two seasons. The fungal diversity and community composition were determined by bioinformatic analysis of the large DNA sequence datasets generated to identify operational taxonomic units (OTUs) for phylogenetic assignment; over 1 million amplicons were sequenced from 36 samples. The alpha-diversity estimates showed high differences in fungal diversity between water and leaf samples, and winter versus summer. Higher numbers of fungal OTUs were identified in both water and leaf samples collected in the summer, and fungal diversity was also generally higher in water than on colonized leaves in both seasons. The fungal community on leaves was usually dominated by Ascomycetes, especially in winter, while water samples contained more diversity at phylum level with Chytridiomycetes often prominent, particularly in summer. At a genus level, a very high relative abundance of Alternaria on leaves was observed in winter at all locations, in contrast to very low abundance of this genus across all water samples. Fungal community composition also varied between sampling locations (i.e., urbanization); in cluster analysis, samples from high urbanization locations formed a distinct cluster, with medium and low urbanization samples clustering together or in some instances, separately. Redundancy analysis shed further light on the relationships between variation in fungal community composition and water physico-chemical properties. Fungal community diversity variation and correlation with different parameters is discussed in detail, but overall, the influence of season outweighed that of urbanization. This study is significant in cataloguing the impact of urbanization on fungal diversity to inform future restoration of urban canal systems on the importance of protecting the natural aquatic fungal flora.


2018 ◽  
Author(s):  
József Geml

AbstractIn temperate regions, slope aspect is one of the most influential drivers of environmental conditions at landscape level. The effect of aspect on vegetation has been well studied, but virtually nothing is known about how fungal communities are shaped by aspect-driven environmental conditions. I carried out DNA metabarcoding of fungi from soil samples taken in a selected study area of Pannonian forests to compare richness and community composition of taxonomic and functional groups of fungi between slopes of predominantly southerly vs. northerly aspect and to assess the influence of selected environmental variables on fungal community composition. The deep sequence data presented here (i.e. 980 766 quality-filtered sequences) indicate that both niche (environmental filtering) and neutral (stochastic) processes shape fungal community composition at landscape level. Fungal community composition correlated strongly with aspect, with many fungi showing preference for either south-facing or north-facing slopes. Several taxonomic and functional groups showed significant differences in richness between north-and south-facing slopes and strong compositional differences were observed in all functional groups. The effect of aspect on fungal communities likely is mediated through contrasting mesoclimatic conditions, that in turn influence edaphic processes as well as vegetation. Finally, the data presented here provide an unprecedented insight into the diversity and landscape-level community dynamics of fungi in the Pannonian forests.


2020 ◽  
Author(s):  
Magdalena Wutkowska ◽  
Dorothee Ehrich ◽  
Sunil Mundra ◽  
Anna Vader ◽  
Pernille B. Eidesen

ABSTRACTArctic plants are affected by many stressors. Root-associated fungi are thought to influence plant performance in stressful environmental conditions. However, the relationships are not transparent; do the number of fungal partners, their ecological functions and community composition mediate the impact of environmental conditions and/or influence host plant performance? To address these questions, we used a common arctic plant as a model system: Bistorta vivipara. Whole plants (including root system) were collected from nine locations in Spitsbergen (n=214). Morphometric features were measured as a proxy for performance and combined with metabarcoding datasets of their root-associated fungi (amplicon sequence variants, ASVs), edaphic and meteorological variables. Seven biological hypotheses regarding fungal influence on plant measures were tested using structural equation modelling. The best-fitting model revealed that local temperature affected plants both directly (negatively aboveground and positively below-ground) and indirectly - mediated by fungal richness and the ratio of symbio- and saprotrophic ASVs. Fungal community composition did not impact plant measurements and plant reproductive investment did not depend on any fungal parameters. The lack of impact of fungal community composition on plant performance suggests that the functional importance of fungi is more important than their identity. The influence of temperature on host plants is therefore complex and should be examined further.


Author(s):  

Fungi are critical agents of the global carbon cycle, however, our ability to link fungal community composition to ecosystem functioning is constrained by a limited understanding the wood decomposition rates of fungus. Here we examined the wood decomposition rate of fungus and the impact of fungal community diversity on the wood decomposing. To understand the relationship between the wood decomposition rate and the traits of fungi, we introduced 37 types of fungus into the wood decomposition system and set the growth rate and moisture tolerance of fungus as the explanatory variables. In addition, we constructed the competition, parasitic and symbiotic model based on Malthus-block growth comprehensive to analyze and predict the interactions between different fungus. The entropy weight-TOPSIS model was established to understand the biodiversity of fungus and obtain the relative dominance degree which can reflect the advantages and disadvantages of different fungus. The ARIMA model was used in five different environments to predict the impact of fungal community diversity on the overall efficiency of wood decomposing. Our research can not only help us to better understand the fungus community, but also significant for improving the quality of climate and the carbon cycle.


2021 ◽  
Author(s):  
Lisa Lunde ◽  
Rannveig Jacobsen ◽  
Havard Kauserud ◽  
Lynne Boddy ◽  
Line Nybakken ◽  
...  

During decomposition of organic matter, microbial communities may follow different successional trajectories depending on the initial environment and colonizers. The timing and order of the assembly history can lead to divergent communities through priority effects. We explored how assembly history and resource quality affected fungal dead wood communities and decomposition, 1.5 and 4.5 years after tree felling. Additionally, we investigated the effect of invertebrate exclusion during the first two summers. For aspen (Populus tremula) logs, we measured initial resource quality of bark and wood, and surveyed the fungal communities by DNA metabarcoding at different time points during succession. We found that a gradient in fungal community composition was related to resource quality and discuss how this may reflect tolerance-dominance trade-offs in fungal life history strategies. As with previous studies, the initial amount of bark tannins was negatively correlated with wood decomposition rate over 4.5 years. The initial fungal community explained variation in community composition after 1.5, but not 4.5 years, of succession. Although the assembly history of initial colonizers may cause alternate trajectories in successional communities, our results indicate that the communities may easily converge with the arrival of secondary colonizers. We also identified a strong invertebrate-induced priority effect of fungal communities, even after 4.5 years of succession, thereby adding crucial knowledge to the importance of invertebrates in affecting fungal community development. By measuring and manipulating aspects of assembly history and resource quality that have rarely been studied, we expand our understanding of the complexity of fungal community dynamics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jorge Domínguez ◽  
Manuel Aira ◽  
Keith A. Crandall ◽  
Marcos Pérez-Losada

AbstractWastewater treatment plants produce hundreds of million tons of sewage sludge every year all over the world. Vermicomposting is well established worldwide and has been successful at processing sewage sludge, which can contribute to alleviate the severe environmental problems caused by its disposal. Here, we utilized 16S and ITS rRNA high-throughput sequencing to characterize bacterial and fungal community composition and structure during the gut- and cast-associated processes (GAP and CAP, respectively) of vermicomposting of sewage sludge. Bacterial and fungal communities of earthworm casts were mainly composed of microbial taxa not found in the sewage sludge; thus most of the bacterial (96%) and fungal (91%) taxa in the sewage sludge were eliminated during vermicomposting, mainly through the GAP. Upon completion of GAP and during CAP, modified microbial communities undergo a succession process leading to more diverse microbiotas than those found in sewage sludge. Consequently, bacterial and fungal community composition changed significantly during vermicomposting. Vermicomposting of sewage resulted in a stable and rich microbial community with potential biostimulant properties that may aid plant growth. Our results support the use of vermicompost derived from sewage sludge for sustainable agricultural practices, if heavy metals or other pollutants are under legislation limits or adequately treated.


2021 ◽  
Vol 7 (7) ◽  
pp. 565
Author(s):  
Anindita Lahiri ◽  
Brian R. Murphy ◽  
Trevor R. Hodkinson

Fraxinus excelsior populations are in decline due to the ash dieback disease Hymenoscyphus fraxineus. It is important to understand genotypic and environmental effects on its fungal microbiome to develop disease management strategies. To do this, we used culture dependent and culture independent approaches to characterize endophyte material from contrasting ash provenances, environments, and tissues (leaves, roots, seeds). Endophytes were isolated and identified using nrITS, LSU, or tef DNA loci in the culture dependent assessments, which were mostly Ascomycota and assigned to 37 families. Few taxa were shared between roots and leaves. The culture independent approach used high throughput sequencing (HTS) of nrITS amplicons directly from plant DNA and detected 35 families. Large differences were found in OTU diversity and community composition estimated by the contrasting approaches and these data need to be combined for estimations of the core endophyte communities. Species richness and Shannon index values were highest for the leaf material and the French population. Few species were shared between seed and leaf tissue. PCoA and NMDS of the HTS data showed that seed and leaf microbiome communities were highly distinct and that there was a strong influence of Fraxinus species identity on their fungal community composition. The results will facilitate a better understanding of ash fungal ecology and are a step toward identifying microbial biocontrol systems to minimize the impact of the disease.


Sign in / Sign up

Export Citation Format

Share Document