scholarly journals Glycolaldehyde disrupts insulin signaling and glucose uptake through adipogenesis

2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Hee-Weon Lee ◽  
Min ji Gu ◽  
Jinyoung Hur ◽  
Ho-Young Park ◽  
Yoonsook Kim ◽  
...  

AbstractThe accumulation of advanced glycation end products (AGEs) plays critical roles in exacerbating obesity, arteriosclerosis, cardiovascular disease, diabetes, and their associated complications. Glycolaldehyde (GA) is the metabolic precursor of several AGEs, and its effects vary based on food and cooking methods. Here, 3T3-L1 adipocytes were used to examine the effects of GA on obesity and insulin resistance. We found that GA treatment did not increase lipid accumulation but increased the distribution of adipocyte differentiation. We also investigated the production of receptor for AGEs (RAGE) and reactive oxygen species (ROS) upon GA treatment, as well as the expression levels of peroxisome proliferator-activated receptors γ (PPARγ), CCAAT enhancer binding protein α (c/EBPα), and CCAAT enhancer binding protein β (c/EBPβ), which are transcription factors for adipogenesis, were significantly increased upon GA treatment in a concentration-dependent manner. GA arrested the cell cycle at the G0/G1 stage during the early phase of adipogenesis and suppressed the expression of p21 and p27. GA increased the expression of CDK2, phosphorylation of mitogen-activated protein kinases, and secretion of pro-inflammatory cytokines. Overall, these results suggest that GA can stimulate lipid metabolism, hence, we suggest that the stimulation of adipogenesis and insulin resistance by GA may be associated with the interaction between RAGE and adipogenic factors in adipocytes.

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1764
Author(s):  
Dahae Lee ◽  
Hee Jae Kwak ◽  
Byoung Ha Kim ◽  
Seung Hyun Kim ◽  
Dong-Wook Kim ◽  
...  

Hispidulin is abundant in Arrabidaea chica, Crossostephium chinense, and Grindelia argentina, among others. p-Synephrine is the main phytochemical constituent of Citrus aurantium. It has been used in combination with various other phytochemicals to determine synergistic effects in studies involving human participants. However, there have been no reports comparing the anti-adipogenic effects of the combination of hispidulin and p-synephrine. The current study explores the anti-adipogenic effects of hispidulin alone and in combination with p-synephrine in a murine preadipocyte cell line, 3T3-L1. Co-treatment resulted in a greater inhibition of the formation of red-labeled lipid droplets than the hispidulin or p-synephrine-alone treatments. Co-treatment with hispidulin and p-synephrine also significantly inhibited adipogenic marker proteins, including Akt, mitogen-activated protein kinases, peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha, glucocorticoid receptor, and CCAAT/enhancer-binding protein β. Although further studies are required to assess the effects of each drug on pharmacokinetic parameters, a combination treatment with hispidulin and p-synephrine may be a potential alternative strategy for developing novel anti-obesity drugs.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1052
Author(s):  
Dahae Lee ◽  
Ji-Youn Kim ◽  
Hae-Won Kim ◽  
Jeong-Eun Yoo ◽  
Ki Sung Kang

Genistein (4,5,7-trihydroxyisoflavone) is abundant in various dietary vegetables, especially soybeans, and is known to have not only an estrogenic effect but also an antiadipogenic effect. Atorvastatin (dihydroxy monocarboxylic acid) is a statin used to prevent heart disease. Although genistein and atorvastatin have been reported to possess antiadipogenic effects, their combined effects are still unclear. The aim of the current study was to explore whether the combination of genistein and atorvastatin at low concentrations significantly suppresses adipogenesis in a murine preadipocyte cell line (3T3-L1) compared to treatment with genistein or atorvastatin alone. Our results showed that cotreatment with 50 µM genistein and 50 nM atorvastatin significantly suppressed preadipocyte differentiation, whereas when each compound was used alone, there was no inhibitory effect. Additionally, cotreatment with genistein and atorvastatin significantly downregulated adipogenic marker proteins, including mitogen-activated protein kinases (MAPKs), peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), glucocorticoid receptor (GR), and CCAAT/enhancer-binding protein β (C/EBPβ). This is the first evidence of the combined antiadipogenic effects of genistein and atorvastatin. Although additional experiments are required, combinational treatment with genistein and atorvastatin may be an alternative treatment for menopause-associated lipid metabolic disorders and obesity.


Endocrinology ◽  
2009 ◽  
Vol 150 (12) ◽  
pp. 5373-5383 ◽  
Author(s):  
Gabriele Tiller ◽  
Pamela Fischer-Posovszky ◽  
Helmut Laumen ◽  
Andreas Finck ◽  
Thomas Skurk ◽  
...  

Abstract Expansion of adipose tissue mass by hypertrophy and hyperplasia is the hallmark of obesity. An automated cDNA screen was established to identify secreted human proteins with an inhibitory effect on adipocyte differentiation and, thereby, a potential inhibitory effect on adipose tissue growth. A member of the TNF superfamily, TNF-like weak inducer of apoptosis (TWEAK; TNF superfamily 12) was identified by means of high-throughput screening with the lipophilic dye Nile Red as an inhibitor of murine adipocyte differentiation and, subsequently, also of human adipocyte differentiation. TWEAK inhibited lipid deposition in a dose-dependent manner without causing cytotoxic effects. This inhibitory action was mimicked by an agonistic antibody of the TWEAK receptor. The TWEAK receptor (fibroblast growth factor inducible 14; CD266) was expressed on human primary preadipocytes and mature adipocytes. Knockdown of TWEAK receptor by short-hairpin RNA abolished the inhibitory effect of TWEAK on cell differentiation, demonstrating that the effects of TWEAK are mediated by its specific receptor. Inhibition of differentiation was the result of interference at an early step of transcriptional activation as assessed by decreased peroxisome proliferator-activated receptor-γ, CCAAT enhancer-binding protein α (C/EBPα), and CCAAT enhancer-binding protein β (C/EBPβ) mRNA expression. In contrast to TNFα, basal and insulin-stimulated glucose uptake and lipolysis of terminally differentiated mature adipocytes and secretion of proinflammatory cytokines were not altered in the presence of TWEAK, and nuclear factor κ B activity was only weakly induced. We conclude from our findings that TWEAK and the corresponding agonistic antibody have the potential to prevent adipose tissue growth without adversely influencing central metabolic pathways or proinflammatory cytokine secretion in adipose tissue.


Sign in / Sign up

Export Citation Format

Share Document