Effect of plant growth-promoting rhizobacterial treatment on growth and physiological characteristics of Triticum aestivum L. under salt stress

2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Dong Gun Lee ◽  
Ji Min Lee ◽  
Chang Geun Choi ◽  
Hojoung Lee ◽  
Jun Cheol Moon ◽  
...  

AbstractSalinity stress is a serious abiotic stress that affects crop quality and production. Rhizospheric microbes have immense potential in synthesizing and releasing various compounds that regulate plant growth and soil physicochemical properties. The aim of the present study was to evaluate the efficacy of indole-3-acetic acid (IAA)-producing rhizobacteria as biofertilizers under salt stress. Among the isolated strains from various soil samples, Bacillus megaterium strain PN89 with multifarious plant growth-promoting traits was selected and used as a monoculture and co-culture with two other standard strains. The plant promoting activity was evaluated using the paper towel method and pot test to observe the effects on the early stage and vegetative growth of wheat (Triticum aestivum L.). The treatment using PGPR strain presented noticeable but varying effects on plant growth under salt stress, that is, PGPR treatment often displayed a significant increase in germination percentage, root and shoot length, and other growth parameters of wheat compared to those in the non-inoculated control. Thus, these results suggest that B. megaterium PN89 can be applied as a bio-fertilizer to alleviate salt stress in T. aestivum.

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1907
Author(s):  
Amir Abdullah Khan ◽  
Tongtong Wang ◽  
Tayyaba Hussain ◽  
Amna ◽  
Fayaz Ali ◽  
...  

Endophytic bacteria are useful for their safe services in plant growth improvement and for ameliorating abiotic and biotic stresses. Salt-tolerant plant-growth-promoting Kocuria rhizophila 14asp (accession number KF 875448) was investigated for its role in pea plants under a saline environment. Salt stress (75 mM and 150 mM NaCl) was subjected to two pea varieties, peas2009 and 9800-10, in a greenhouse under a complete randomized design. Different parameters such as plant growth promotion, relative water content, chlorophyll, antioxidants, and mineral contents were analyzed to elucidate the extent of tolerance persuaded by PGPB (plant-growth-promoting bacteria). Exhibition of adverse effects was noticed in uninoculated varieties. However, inoculation of K. rhizophila improved the morphological parameters, antioxidant enzymes, and minimized the uptake of Na+ in plants under various saline regimes. Pea variety 9800-10 exhibited more tolerance than peas2009 in all traits, such as root and shoot length, fresh and dry biomass, chlorophyll contents, and antioxidant enzymes. Our results showed that halotolerant K. rhizophila inoculation plays a vital role in enhancing plant growth by interacting ingeniously with plants through antioxidant systems, enduring saline conditions.


2021 ◽  
Vol 5 ◽  
Author(s):  
Himadri Bhusan Bal ◽  
Tapan Kumar Adhya

Submergence stress slows seed germination, imposes fatalities, and delays seedling establishment in rice. Seeds of submergence susceptible rice variety IR 42 were inoculated with four 1-aminocyclopropane-1-carboxylic acid (ACC) utilizing isolates viz., Bacillus sp. (AR-ACC1), Microbacterium sp. (AR-ACC2), Methylophaga sp. (AR-ACC3), and Paenibacillus sp. (ANR-ACC3) and subjected to submergence stress under controlled conditions for 7 days. Seeds treated with Microbacterium sp. AR-ACC2, Paenibacillus sp. ANR-ACC3, and Methylophaga sp. AR-ACC3 significantly enhanced the germination percentage (GP), seedling vigor index (SVI), and other growth parameters like root and shoot length and total chlorophyll contents, when compared with nonbacterized seeds submerged similarly. However, the values were statistically at par when control seeds were treated with l-α-(2-aminoethoxyvinyl) glycine hydrochloride (AVG), a known inhibitor of ethylene production. Results suggest that stress ethylene production was significantly reduced by around 85% in seedlings treated with Microbacterium sp. AR-ACC2 as compared with untreated control seeds under submergence. Paenibacillus sp. ANR-ACC3 and Methylophaga sp. AR-ACC3 were the next effective strains. Ethylene synthesis in seedlings was statistically at par with seeds treated with AVG suggesting ACC deaminase can effectively reduce ethylene levels in plants subjected to submergence. Bacillus sp. (AR-ACC1) was neither able to significantly promote seedling growth parameters nor inhibit ethylene production as compared with control seeds. Results suggest that flooded soil planted to rice harbor microorganisms with plant growth-promoting properties that can be used effectively to alleviate submergence stresses in susceptible rice varieties under field conditions.


Sign in / Sign up

Export Citation Format

Share Document