scholarly journals Strategies for large bone defect reconstruction after trauma, infections or tumour excision: a comprehensive review of the literature

2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Filippo Migliorini ◽  
Gerardo La Padula ◽  
Ernesto Torsiello ◽  
Filippo Spiezia ◽  
Francesco Oliva ◽  
...  

AbstractLarge bone defects resulting from musculoskeletal tumours, infections, or trauma are often unable to heal spontaneously. The challenge for surgeons is to avoid amputation, and provide the best functional outcomes. Allograft, vascularized fibular or iliac graft, hybrid graft, extracorporeal devitalized autograft, distraction osteogenesis, induced-membrane technique, and segmental prostheses are the most common surgical strategies to manage large bone defects. Given its optimal osteogenesis, osteoinduction, osteoconduction, and histocompatibility properties, along with the lower the risk of immunological rejection, autologous graft represents the most common used strategy for reconstruction of bone defects. However, the choice of the best surgical technique is still debated, and no consensus has been reached. The present study investigated the current reconstructive strategies for large bone defect after trauma, infections, or tumour excision, discussed advantages and disadvantages of each technique, debated available techniques and materials, and evaluated complications and new perspectives.

2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Mohammed soliman ◽  
Yousif Khira ◽  
.mohamed Elzoheiry ◽  
ahmad abdelwahab

2018 ◽  
Vol 6 (25) ◽  
pp. 4197-4204 ◽  
Author(s):  
Linyang Chu ◽  
Guoqiang Jiang ◽  
Xi-Le Hu ◽  
Tony D. James ◽  
Xiao-Peng He ◽  
...  

We report a segmental radial bone defect model used to evaluate the osteogenesis, vascularization and osseointegration of a bioactive multiphase macroporous scaffold with nano-crystal surface microstructures that can release bioactive ions.


2020 ◽  
Author(s):  
Michael Bouyer ◽  
Charlotte Garot ◽  
Paul Machillot ◽  
Julien Vollaire ◽  
Vincent Fitzpatrick ◽  
...  

Abstractthe reconstruction of large bone defects (12 cm3) remains a challenge for clinicians. We developed a new critical-size mandibular bone defect model on a mini-pig, close to human clinical issues. We analyzed the bone reconstruction obtained by a 3D printed scaffold made of clinical-grade PLA, coated with a polyelectrolyte film delivering an osteogenic bioactive molecule (BMP-2). We compared the results (CT-scan, μCT, histology) to the gold standard solution, bone autograft. We demonstrated that the dose of BMP-2 delivered from the scaffold significantly influenced the amount of regenerated bone and the repair kinetics, with a clear BMP-2 dose-dependence. Bone was homogeneously formed inside the scaffold without ectopic bone formation. The bone repair was as good as for the bone autograft. The BMP-2 doses applied in our study were reduced 20 to 75-fold compared to the commercial collagen sponges used in the current clinical applications, without any adverse effects. 3D printed PLA scaffolds loaded with reduced doses of BMP-2 can be a safe and simple solution for large bone defects faced in the clinic.


2021 ◽  
Vol 10 (1) ◽  
pp. 31-40
Author(s):  
Jie Shen ◽  
Dong Sun ◽  
Shengpeng Yu ◽  
Jingshu Fu ◽  
Xiaohua Wang ◽  
...  

Aims Treatment of chronic osteomyelitis (COM) for young patients remains a challenge. Large bone deficiencies secondary to COM can be treated using induced membrane technique (IMT). However, it is unclear which type of bone graft is optimal. The goal of the study was to determine the clinical effectiveness of bone marrow concentrator modified allograft (BMCA) versus bone marrow aspirate mixed allograft (BMAA) for children with COM of long bones. Methods Between January 2013 and December 2017, 26 young patients with COM were enrolled. Different bone grafts were applied to repair bone defects secondary to IMT procedure for infection eradication. Group BMCA was administered BMCA while Group BMAA was given BMAA. The results of this case-control study were retrospectively analyzed. Results Patient infection in both groups was eradicated after IMT surgery. As for reconstruction surgery, no substantial changes in the operative period (p = 0.852), intraoperative blood loss (p = 0.573), or length of hospital stay (p = 0.362) were found between the two groups. All patients were monitored for 12 to 60 months. The median time to bone healing was 4.0 months (interquartile range (IQR) 3.0 to 5.0; range 3 to 7) and 5.0 months (IQR 4.0 to 7.0; range 3 to 10) in Groups BMCA and BMAA, respectively. The time to heal in Group BMCA versus Group BMAA was substantially lower (p = 0.024). Conclusion IMT with BMCA or BMAA may attain healing in large bone defects secondary to COM in children. The bone healing time was significantly shorter for BMCA, indicating that this could be considered as a new strategy for bone defect after COM treatment. Cite this article: Bone Joint Res 2021;10(1):31–40.


2020 ◽  
Vol 89 (2) ◽  
pp. 163-169
Author(s):  
Robert Srnec ◽  
Andrea Nečasová ◽  
Pavel Proks ◽  
Miša Škorič ◽  
Zita Filipejová ◽  
...  

This study was conducted as an in vivo experiment in adult miniature pigs with the aim to test two new biomaterials. An iatrogenic defect was made into the central femoral diaphysis in the experimental animals and subsequently fixated by bridging plate osteosynthesis. Into the defect we implanted a cancellous autograft (control group), a pasty injectable scaffold (EXP A), and a porous 3D cylinder (EXP B). Radiological examination was performed in all animals at 0, 10, 20, 30 weeks after surgical procedure and histological assessment was performed. In the newly formed bone the osteoblastic activity was monitored. In terms of radiology, the most effective method was observed in the control group (completely healed 100%) compared to experimental groups EXP A (70.0%) and EXP B (62.5%). Histological assessment showed a higher cell count in the place of bone defect in the control group compared to experimental groups. Between the experimental groups, a higher count of bone marrow cells was found in group EXP B. Both newly developed biomaterials seem to be suitable as replacements for large bone defects, having good workability and applicability. However, compared to the control group treated with a cancellous autograft, the newly formed bone did not reach the same number of cells settling in and in some cases, full radiological healing was not reached. Nevertheless, the material was found to be grown into the original bone in all cases within the experimental groups. The new biomaterials have a great potential as a substitute in the treatment of large bone defects.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Hichem Issaoui ◽  
Mohammed Reda Fekhaoui ◽  
Moheddin Jamous ◽  
Alain-Charles Masquelet

The induced membrane technique was initially described by Masquelet et al. in 1986 as a treatment for tibia nonunion; then, it became one of the established methods in the management of bone defects. Several changes have been made to this technique and have been used in different contexts and different methodologies. We present the case of a 16-year-old girl admitted to our department for a polytrauma after a motorcycle accident. She presented a Gustilo III-A open fracture of the right femoral shaft with a large bone defect of 8 centimeters that we treated with a modified Masquelet technique. In the first stage, an Open Reduction and Internal Fixation of the fracture was made using a 4,5 mm Dynamic Compression Plate and a PMMA cement was inserted at the bone defect area. The second stage was done after 11 weeks, and the defect area was filled exclusively with bone allograft from a bone bank. Complete bony union was seen at 60 weeks of follow-up. After the removal of the implants by another surgeon, the patient presented an atraumatic fracture of the neoformed bone that we treated with intramedullary femoral nailing associated with a local autograft using reaming debris. A complete bony union was achieved after 12 weeks with a complete range of motion of the hip and knee. The stability given to the fracture is essential because it influences the quality of the induced membrane and Masquelet has recommended high initial fixation rigidity to promote incorporation of the graft. It is recommended to delay the second stage of this technique after 8 weeks, especially in femoral reconstruction, to optimize the quality of the induced membrane. Several studies used a modified induced membrane technique to recreate a traumatic large bone defect, and all of them used an autologous bone graft alone or an enriched bone graft. In this case, the use of allograft exclusively seems to be as successful as an autologous or enriched bone graft. Now, with the advent of bone banks, it is possible to get an unlimited amount of allograft, so additional research and large studies are necessary before giving recommendations.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Ryo Tazawa ◽  
Kentaro Uchida ◽  
Hiroaki Minehara ◽  
Terumasa Matsuura ◽  
Tadashi Kawamura ◽  
...  

Abstract Background Delivery of bone morphogenetic protein-2 (BMP-2) via animal-derived absorbable collagen materials is used for the treatment of large bone defects. However, the administration of bovine proteins to humans is associated with the risk of zoonotic complications. We therefore examined the effect of combining BMP-2 with collagen-like peptides, poly(POG)n, in a critical-sized bone defect mouse model. Methods A 2-mm critical-sized bone defect was created in the femur of 9-week-old male C57/BL6J mice. Mice were randomly allocated into one of four treatment groups (n = 6 each): control (no treatment), poly(POG)n only, 0.2 μg, or 2.0 μg BMP-2 with poly(POG)n. New bone formation was monitored using soft X-ray radiographs, and bone formation at the bone defect site was examined using micro-computed tomography and histological examination at 4 weeks after surgery. Results Administration of 2.0 μg of BMP-2 with poly(POG)n promoted new bone formation and resulted in greater bone volume and bone mineral content than that observed in the control group and successfully achieved consolidation. In contrast, bone formation in all other groups was scarce. Conclusions Our findings suggest the potential of BMP-2 with poly(POG)n as a material, free from animal-derived collagen, for the treatment of large bone defects.


2017 ◽  
Vol 38 (6) ◽  
pp. 671-676 ◽  
Author(s):  
Kota Watanabe ◽  
Atsushi Teramoto ◽  
Takuma Kobayashi ◽  
Izaya Ogon ◽  
Yuzuru Sakakibara ◽  
...  

Background: Pathogenesis of ankle disorders with a large bone defect is varied and treatment for those problems is challenging for orthopaedic surgeons. The aims of this study were to present an operative technique of arthrodesis for the reconstruction of the ankle and hindfoot with a large bone defect using a soft tissue–preserved fibular strut graft and to report outcomes of consecutively treated patients. Methods: Twelve feet from 11 patients, including feet with aseptic necrosis of the talus and total ankle implant loosening, were treated. Bone defects were filled using iliac bone and/or resected fibula and tibiotalocalcaneal arthrodesis was performed using a retrograde intramedullary nail. A modified transfibular approach was used to expose the affected joint while preserving the lateral to posterior skin and soft tissues on the fibula. The periods of bony fusion and outcomes were radiographically and clinically evaluated. The mean follow-up period was 33.4 months. Results: Bony fusion was achieved within 3 months in all cases. Coronal and sagittal alignments were acceptable, and the mean American Orthopaedic Foot & Ankle Score improved from 53.8 to 75.5 at the final follow-up. All patients graded their results of treatment as “satisfied.” Conclusion: This procedure did not require special techniques and it should be applicable to complicated cases with large bone defects. High fusion rates that we believe are due to preserving blood supply to the fibular graft can be expected with preservation of the hindfoot height. Level of Evidence: Level IV, case series.


Sign in / Sign up

Export Citation Format

Share Document