scholarly journals The effect of household storage tanks/vessels and user practices on the quality of water: a systematic review of literature

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Musa Manga ◽  
Timothy G. Ngobi ◽  
Lawrence Okeny ◽  
Pamela Acheng ◽  
Hidaya Namakula ◽  
...  

Abstract Background Household water storage remains a necessity in many communities worldwide, especially in the developing countries. Water storage often using tanks/vessels is envisaged to be a source of water contamination, along with related user practices. Several studies have investigated this phenomenon, albeit in isolation. This study aimed at developing a systematic review, focusing on the impacts of water storage tank/vessel features and user practices on water quality. Methods Database searches for relevant peer-reviewed papers and grey literature were done. A systematic criterion was set for the selection of publications and after scrutinizing 1106 records, 24 were selected. These were further subjected to a quality appraisal, and data was extracted from them to complete the review. Results and discussion Microbiological and physicochemical parameters were the basis for measuring water quality in storage tanks or vessels. Water storage tank/vessel material and retention time had the highest effect on stored water quality along with age, colour, design, and location. Water storage tank/vessel cleaning and hygiene practices like tank/vessel covering were the user practices most investigated by researchers in the literature reviewed and they were seen to have an impact on stored water quality. Conclusions There is evidence in the literature that storage tanks/vessels, and user practices affect water quality. Little is known about the optimal tank/vessel cleaning frequency to ensure safe drinking water quality. More research is required to conclusively determine the best matrix of tank/vessel features and user practices to ensure good water quality.

Author(s):  
Necdet Altuntop ◽  
Veysel Ozceyhan ◽  
Yusuf Tekin ◽  
Sibel Gunes

In this study the effect of obstacle geometry and its position on thermal stratification in solar powered domestic hot water storage tanks are numerically investigated. The goal of this study is to obtain higher thermal stratification and supply hot water for usage as long as possible. The temperature distributions are presented for three different obstacle geometries (1, 2 and 3) and six different distances (f = 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 mm) from the bottom of the hot water storage tank. The numerical method is validated using both experimental and numerical results available in the literature. It is observed from the results that the thermal stratification increases with the increasing obstacle distance from the bottom of the hot water storage tank for obstacle 1 and 3. The obstacle 2 provides less thermal stratification than the obstacles 1 and 3. As a result, in a duration of 30 minutes, the obstacle 3 provides the best thermal stratification for the distance of f = 0.8 mm from the bottom of the hot water storage tank.


2007 ◽  
Vol 5 (2) ◽  
pp. 307-313 ◽  
Author(s):  
Jay P. Graham ◽  
James VanDerslice

Many communities along the US-México border remain without infrastructure for water and sewage. Residents in these communities often collect and store their water in open 55-gallon drums. This study evaluated changes in drinking water quality resulting from an intervention that provided large closed water storage tanks (2,500-gallons) to individual homes lacking a piped water supply. After the intervention, many of the households did not change the source of their drinking water to the large storage tanks. Therefore, water quality results were first compared based on the source of the household's drinking water: store or vending machine, large tank, or collected from a public supply and transported by the household. Of the households that used the large storage tank as their drinking water supply, drinking water quality was generally of poorer quality. Fifty-four percent of samples collected prior to intervention had detectable levels of total coliforms, while 82% of samples were positive nine months after the intervention (p < 0.05). Exploratory analyses were also carried out to measure water quality at different points between collection by water delivery trucks and delivery to the household's large storage tank. Thirty percent of the samples taken immediately after water was delivered to the home had high total coliforms (>10 CFU/100 ml). Mean free chlorine levels dropped from 0.43 mg/l, where the trucks filled their tanks, to 0.20 mg/l inside the household's tank immediately after delivery. Results of this study have implications for interventions that focus on safe water treatment and storage in the home, and for guidelines regarding the level of free chlorine required in water delivered by water delivery trucks.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Fabiana Cristina Julião ◽  
Karina Aparecida Abreu Tonani ◽  
Brisa Maria Fregonesi ◽  
Guilherme Sgobbi Zagui ◽  
Carolina Sampaio Machado ◽  
...  

Introduction: Storage tanks for household water usage guarantees convenience and safety forconsumers in relation to water intermittency. Neglecting a minimal care for storage tanks can turnthem into a source of water unfit for consumption. Objective: Evaluate the physical, chemical, andmicrobiological quality of water in household tanks to highlight the need for individual actions toguarantee the quality of water consumed at home. Methods: Residents of 217 homes answereda questionnaire to gather information about the water storage tank conditions and maintenance.Chlorine dosing, pH and temperature measurements were performed in situ and metal analyseswere made using an inductively coupled plasma mass spectrometry (ICP-MS). The presence ofparasites was evaluated using the spontaneous sedimentation technique and presence of bacteriafrom the coliform groups (total and fecal) were made using the multiple-tube technique with thechromogenic substrate. Results: Results showed that 115 participants knew the correct storage tankmaintenance period and 109 participants did not perform the storage tank maintenance at therecommended frequency. Mean values of chlorine, pH, and temperature were 1.34 mg/L, 6.5, and25.4 ºC, respectively. Average concentrations of metals were below the maximum values allowed.Parasites and bacteria were not detected. Tests indicated the water samples were in accordancewith the potable water quality standards endorsed or recommended by the Brazilian legislation.Conclusion: Results did not show microbiological contamination in study samples. Nevertheless, it isnecessary to keep the population regularly informed about the importance to maintain storage watertanks clean. Currently, there is a growing concern with the development of individual actions aimedat human health and prevention of water-related diseases concerning its access and use. Therefore,we need health education programs to guide community participation into the promotion of a betterquality of life.


2020 ◽  
Vol 180 ◽  
pp. 107029
Author(s):  
Pin Wu ◽  
Zhichao Wang ◽  
Xiaofeng Li ◽  
Zhaowei Xu ◽  
Yingxia Yang ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4741
Author(s):  
María Gasque ◽  
Federico Ibáñez ◽  
Pablo González-Altozano

This paper demonstrates that it is possible to characterize the water temperature profile and its temporal trend in a hot water storage tank during the thermal charge process, using a minimum number of thermocouples (TC), with minor differences compared to experimental data. Four experimental tests (two types of inlet and two water flow rates) were conducted in a 950 L capacity tank. For each experimental test (with 12 TC), four models were developed using a decreasing number of TC (7, 4, 3 and 2, respectively). The results of the estimation of water temperature obtained with each of the four models were compared with those of a fifth model performed with 12 TC. All models were tested for constant inlet temperature. Very acceptable results were achieved (RMSE between 0.2065 °C and 0.8706 °C in models with 3 TC). The models were also useful to estimate the water temperature profile and the evolution of thermocline thickness even with only 3 TC (RMSE between 0.00247 °C and 0.00292 °C). A comparison with a CFD model was carried out to complete the study with very small differences between both approaches when applied to the estimation of the instantaneous temperature profile. The proposed methodology has proven to be very effective in estimating several of the temperature-based indices commonly employed to evaluate thermal stratification in water storage tanks, with only two or three experimental temperature data measurements. It can also be used as a complementary tool to other techniques such as the validation of numerical simulations or in cases where only a few experimental temperature values are available.


Sign in / Sign up

Export Citation Format

Share Document