scholarly journals Effects of dietary Clostridium butyricum supplementation on growth performance, intestinal development, and immune response of weaned piglets challenged with lipopolysaccharide

Author(s):  
Ling Chen ◽  
Shuang Li ◽  
Jie Zheng ◽  
Wentao Li ◽  
Xuemei Jiang ◽  
...  
Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 527
Author(s):  
Jie Fu ◽  
Tenghao Wang ◽  
Xiao Xiao ◽  
Yuanzhi Cheng ◽  
Fengqin Wang ◽  
...  

This study investigated the effects of dietary C. butyricum ZJU-F1 on the apparent digestibility of nutrients, intestinal barrier function, immune response, and microflora of weaned piglets, with the aim of providing a theoretical basis for the application of Clostridium butyricum as an alternative to antibiotics in weaned piglets. A total of 120 weanling piglets were randomly divided into four treatment groups, in which piglets were fed a basal diet supplemented with antibiotics (CON), Bacillus licheniformis (BL), Clostridium butyricum ZJU-F1 (CB), or Clostridium butyricum and Bacillus licheniformis (CB-BL), respectively. The results showed that CB and CB-BL treatment increased the intestinal digestibility of nutrients, decreased intestinal permeability, and increased intestinal tight junction protein and mucin expression, thus maintaining the integrity of the intestinal epithelial barrier. CB and CB-BL, as exogenous probiotics, were also found to stimulate the immune response of weaned piglets and improve the expression of antimicrobial peptides in the ileum. In addition, dietary CB and CB-BL increased the proportion of Lactobacillus. The levels of butyric acid, propionic acid, acetic acid, and total acid were significantly increased in the ceca of piglets fed CB and CB-BL. Furthermore, we validated the effects of C. butyricum ZJU-F1 on the intestinal barrier function and immune response in vitro and found C. butyricum ZJU-F1 improved intestinal function and enhanced the TLR-2-MyD88-NF-κB signaling.


2016 ◽  
Vol 101 (1) ◽  
pp. 105-112 ◽  
Author(s):  
D. F. Wang ◽  
L. L. Zhou ◽  
H. L. Zhou ◽  
G. Y. Hou ◽  
X. Zhou ◽  
...  

2019 ◽  
Vol 97 (10) ◽  
pp. 4140-4151 ◽  
Author(s):  
Kangli Wang ◽  
Guangyong Chen ◽  
Guangtian Cao ◽  
Yinglei Xu ◽  
Yongxia Wang ◽  
...  

Abstract This study was conducted to investigate the effects of Clostridium butyricum and Enterococcus faecalis on growth performance, immune function, inflammation-related pathways, and microflora community in weaned piglets challenged with lipopolysaccharide (LPS). One hundred and eighty 28-d-old weaned piglets were randomly divided into 3 treatments groups: piglets fed with a basal diet (Con), piglets fed with a basal diet containing 6 × 109 CFU C. butyricum·kg−1 (CB), and piglets fed with a basal diet containing 2 × 1010 CFU E. faecali·kg−1 (EF). At the end of trial, 1 pig was randomly selected from for each pen (6 pigs per treatment group) and these 18 piglets were orally challenged with LPS 25 μg·kg−1 body weight. The result showed that piglets fed C. butyricum and E. faecalis had greater final BW compared with the control piglets (P < 0.05). The C. butyricum and E. faecalis fed piglets had lower levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), IL-1β, tumor inflammatory factor-α (TNF-α), and had greater level of serum interferon-γ (IFN-γ) than control piglets at 1.5 and 3 h after injection with LPS (P < 0.05). Furthermore, piglets in the C. butyricum or E. faecalis treatment groups had a greater ratio of jejunal villus height to crypt depth (V/C) compared with control piglets after challenge with LPS for 3 h (P < 0.05). Compared with the control treatment, the CB and EF treatments significantly decreased the expression of inflammation-related pathway factors (TLR4, MyD88, and NF-κB) after challenge with LPS for 3 h (P < 0.05). High-throughput sequencing revealed that C. butyricum and E. faecalis modulated bacterial diversity in the colon. The species richness and alpha diversity (Shannon) of bacterial samples in CB or EF piglets challenged with LPS were higher than those in LPS-challenged control piglets. Furthermore, the relative abundance of Bacteroidales-Rikenellanceae in the CB group was higher than that in the control group (P < 0.05), whereas EF piglets had a higher relative abundance of Lactobacillus amylovorus and Lactobacillus gasseri (P < 0.05). In conclusion, dietary supplementation with C. butyricum or E. faecalis promoted growth performance, improved immunity, relieved intestinal villus damage and inflammation, and optimized the intestinal flora in LPS-challenged weaned piglets.


Sign in / Sign up

Export Citation Format

Share Document