scholarly journals Enhanced susceptibility of cancer cells to oncolytic rhabdo-virotherapy by expression of Nodamura virus protein B2 as a suppressor of RNA interference

Author(s):  
Donald Bastin ◽  
Amelia S. Aitken ◽  
Adrian Pelin ◽  
Larissa A. Pikor ◽  
Mathieu J. F. Crupi ◽  
...  
Biochemistry ◽  
2009 ◽  
Vol 48 (11) ◽  
pp. 2307-2309 ◽  
Author(s):  
Stephanie Körber ◽  
P. Shaik Syed Ali ◽  
Julian C.-H. Chen

2021 ◽  
Vol 12 (12) ◽  
pp. 4547-4556
Author(s):  
Hongzhi Qiao ◽  
Lei Zhang ◽  
Dong Fang ◽  
Zhenzhu Zhu ◽  
Weijiang He ◽  
...  

Bcl-2-related tumor resistance to anticancer drugs can be overcome by silencing the cellular Bcl-2 gene via RNA interference. The realization of the goal is exemplified by delivering Bcl-2 siRNA and a tumor-resistant Cu complex to cancer cells with an ATP-responsive nanocarrier.


2007 ◽  
Vol 14 (1) ◽  
pp. 20-28 ◽  
Author(s):  
Jayanthi S. Lea ◽  
Noriaki Sunaga ◽  
Mitsuo Sato ◽  
Geetha Kalahasti ◽  
David S. Miller ◽  
...  

mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Qingxia Han ◽  
Gang Chen ◽  
Jinyan Wang ◽  
David Jee ◽  
Wan-Xiang Li ◽  
...  

ABSTRACT Distinct mammalian RNA viruses trigger Dicer-mediated production of virus-derived small-interfering RNAs (vsiRNA) and encode unrelated proteins to suppress vsiRNA biogenesis. However, the mechanism and function of the mammalian RNA interference (RNAi) response are poorly understood. Here, we characterized antiviral RNAi in a mouse model of infection with Nodamura virus (NoV), a mosquito-transmissible positive-strand RNA virus encoding a known double-stranded RNA (dsRNA)-binding viral suppressor of RNAi (VSR), the B2 protein. We show that inhibition of NoV RNA replication by antiviral RNAi in mouse embryonic fibroblasts (MEFs) requires Dicer-dependent vsiRNA biogenesis and Argonaute-2 slicer activity. We found that VSR-B2 of NoV enhances viral RNA replication in wild-type but not RNAi-defective MEFs such as Argonaute-2 catalytic-dead MEFs and Dicer or Argonaute-2 knockout MEFs, indicating that VSR-B2 acts mainly by suppressing antiviral RNAi in the differentiated murine cells. Consistently, VSR-B2 expression in MEFs has no detectable effect on the induction of interferon-stimulated genes or the activation of global RNA cleavages by RNase L. Moreover, we demonstrate that NoV infection of adult mice induces production of abundant vsiRNA active to guide RNA slicing by Argonaute-2. Notably, VSR-B2 suppresses the biogenesis of both vsiRNA and the slicing-competent vsiRNA-Argonaute-2 complex without detectable inhibition of Argonaute-2 slicing guided by endogenous microRNA, which dramatically enhances viral load and promotes lethal NoV infection in adult mice either intact or defective in the signaling by type I, II, and III interferons. Together, our findings suggest that the mouse RNAi response confers essential protective antiviral immunity in both the presence and absence of the interferon response. IMPORTANCE Innate immune sensing of viral nucleic acids in mammals triggers potent antiviral responses regulated by interferons known to antagonize the induction of RNA interference (RNAi) by synthetic long double-stranded RNA (dsRNA). Here, we show that Nodamura virus (NoV) infection in adult mice activates processing of the viral dsRNA replicative intermediates into small interfering RNAs (siRNAs) active to guide RNA slicing by Argonaute-2. Genetic studies demonstrate that NoV RNA replication in mouse embryonic fibroblasts is inhibited by the RNAi pathway and enhanced by the B2 viral RNAi suppressor only in RNAi-competent cells. When B2 is rendered nonexpressing or nonfunctional, the resulting mutant viruses become nonpathogenic and are cleared in adult mice either intact or defective in the signaling by type I, II, and III interferons. Our findings suggest that mouse antiviral RNAi is active and necessary for the in vivo defense against viral infection in both the presence and absence of the interferon response.


Sign in / Sign up

Export Citation Format

Share Document