scholarly journals All-soft multiaxial force sensor based on liquid metal for electronic skin

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kyuyoung Kim ◽  
Junseong Ahn ◽  
Yongrok Jeong ◽  
Jungrak Choi ◽  
Osman Gul ◽  
...  

AbstractElectronic skin (E-skin) capable of detecting various physical stimuli is required for monitoring external environments accurately. Here, we report an all-soft multiaxial force sensor based on liquid metal microchannel array for electronic skin applications. The proposed sensor is composed of stretchable elastomer and Galinstan, a eutectic gallium-indium alloy, providing a high mechanical flexibility and electro-mechanical durability. Liquid metal microchannel arrays are fabricated in multilayer and positioned along a dome structure to detect multi-directional forces, supported by numerical simulation results. By adjusting the height of the dome, we could control the response of the multiaxial sensor with respect to the deflection. As a demonstration of multiaxial force sensing, we were able to monitor the direction of multidirectional forces using a finger by the response of liquid metal microchannel arrays. This research could be applied to various fields including soft robotics, wearable devices, and smart prosthetics for artificial intelligent skin applications.

Author(s):  
Jinjian Huang ◽  
Ye Liu ◽  
Xiang Chi ◽  
Yungang Jiang ◽  
Ziyan Xu ◽  
...  

Simulating the comprehensive functions of native skin—and not simply the perception of external physical stimuli—by electronic skin (e-skin) has gathered increasing attention in the development of wearable devices and human-interactive technology.


2021 ◽  
pp. 2001084
Author(s):  
Yanhao Huang ◽  
Libo Chen ◽  
Shaodi Zheng ◽  
Xiaotian Wu ◽  
Lei Liu ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2478
Author(s):  
Hyeon Seok Oh ◽  
Chung Hyeon Lee ◽  
Na Kyoung Kim ◽  
Taechang An ◽  
Geon Hwee Kim

Skin is the largest sensory organ and receives information from external stimuli. Human body signals have been monitored using wearable devices, which are gradually being replaced by electronic skin (E-skin). We assessed the basic technologies from two points of view: sensing mechanism and material. Firstly, E-skins were fabricated using a tactile sensor. Secondly, E-skin sensors were composed of an active component performing actual functions and a flexible component that served as a substrate. Based on the above fabrication processes, the technologies that need more development were introduced. All of these techniques, which achieve high performance in different ways, are covered briefly in this paper. We expect that patients’ quality of life can be improved by the application of E-skin devices, which represent an applied advanced technology for real-time bio- and health signal monitoring. The advanced E-skins are convenient and suitable to be applied in the fields of medicine, military and environmental monitoring.


Soft Matter ◽  
2018 ◽  
Vol 14 (17) ◽  
pp. 3296-3303 ◽  
Author(s):  
Tim Shay ◽  
Orlin D. Velev ◽  
Michael D. Dickey

Liquid metals interfaced with hydrogels create soft, deformable electrodes for emerging wearable devices and soft robotics. This paper quantifies and tunes the impedance of this interface for use in ECG electrodes.


2020 ◽  
Vol 63 (4) ◽  
pp. 847-856 ◽  
Author(s):  
Azlan Zahid ◽  
Long He ◽  
Lihua Zeng ◽  
Daeun Choi ◽  
James Schupp ◽  
...  

HighlightsAn end-effector with two degrees of freedom (2R) was developed for pruning apple trees.A rational 2×2 relationship (R2 = 0.93) was found for ‘Fuji’ apple tree branch diameter and cutting force.Simulation showed that the cutter can be aligned in a wide range of orientations in a spherical workspace.The developed end-effector was able to cut branches up to 12 mm in diameter.Abstract. Robotics and automation technologies are now used extensively in agriculture, while production operations for tree fruit crops still largely depend on manual labor. Manual pruning is a labor-intensive and costly task in apple production. Robotic pruning is a potential solution, but it involves several challenges due to the unstructured work environment. This study focused on designing an end-effector prototype for pruning considering the maneuvering, spatial, mechanical, and horticultural requirements. Branch cutting force was measured with a thin force sensor to provide guidelines for the end-effector design. The test results indicated the relationship between the force required to cut different diameter branches with an R2 value of 0.93. The end-effector was developed using two rotary motors, a pneumatic cylinder, and a pair of bypass shear blades. A three-directional linear manipulator system and a control system were built for moving the end-effector to targeted locations. A mathematical model was developed for simulation of the workspace utilization and reachable points of the end-effector. The simulation results indicated that the end-effector can be aligned in a wide range of orientations of the cutter. Field tests were conducted for validation of the simulation results and performance assessment of the end-effector. The results indicated that the end-effector with the current parameter settings successfully cut branches up to 12 mm in diameter and was able to cut branches in a wide range of possible orientations in a given 3D space. The robotic end-effector developed in this study is a core component of an automated pruning system for fruit trees. In future work, an integrated manipulator system will be developed for branch accessibility with collision-free trajectories. Keywords: Malus × domestica (Borkh.), Pruning end-effector, Reachable-points simulation, Tree pruning.


Author(s):  
Lucy Johnston ◽  
Jiong Yang ◽  
Jialuo Han ◽  
Kourosh Kalantar-Zadeh ◽  
Jianbo Tang

Liquid metals, highly conductive and flowable metals, are increasingly becoming versatile choices for soft electronics and wearable devices. High resolution liquid metal patterning strategies accommodative to different substrate materials and...


2017 ◽  
Vol 264 ◽  
pp. 260-267 ◽  
Author(s):  
Takuro Nakadegawa ◽  
Hiroki Ishizuka ◽  
Norihisa Miki

Sign in / Sign up

Export Citation Format

Share Document