scholarly journals Web crawling based context aware recommender system using optimized deep recurrent neural network

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Venugopal Boppana ◽  
P. Sandhya

AbstractRecommendation systems are obtaining more attention in various application fields especially e-commerce, social networks and tourism etc. The top items are recommended based on the ability of recommender system which predict the future preference out of the available items. Because of the internet, the people in the current society has too many options that’s why the recommendation system is very essential. The recommendation is achieved by the particular users who predict the ratings for numerous items and recommend those items to other users. Majorly, content and collaborative filtering techniques are employed in typical recommendation systems to find user preferences and provide final recommendations. But, these systems commonly lacks to take growing user preferences in various contextual factors. Context aware recommendation systems consider various contextual parameters into account and attempt to catch user preferences appropriately. The majority of the work in the recommender system domain focuses on increasing the recommendation accuracy by employing several proposed approaches where the main motive remains to maximize the accuracy of recommendations while ignoring other design objectives, such as a user’s an item’s context. Therefore, in this paper an effective deep learning based context aware recommendation model is proposed which can be act as an efficient recommender system by showing minimum error during recommendation. Initially, the dataset is pre-processed using Natural Language Tool Kit (NLTK) in Python platform. After pre-processing, the TF–IDF and word embedding model is used for every pre-processed reviews to extract the features and contextual information. The extracted feature is considered as an input of density based clustering to group the negative, neutral and positive sentiments of user reviews. Finally, deep recurrent neural Network (DRNN) is employed to get the most preferable user from every cluster. The recurrent neural network model parameter values are initialized through the fitness computation of Bald Eagle Search (BES) algorithm. The proposed model is implemented using NYC Restaurant Rich Dataset using Python programming platform and performance is evaluated based on the metrics of accuracy, precision, recall and compared with existing models. The proposed recommendation model achieves 99.6% accuracy which is comparatively higher than other machine learning models.

Author(s):  
Sara Saeedi ◽  
Xueyang Zou ◽  
Mariel Gonzales ◽  
Steve Liang

The ubiquity of mobile sensors (such as GPS, accelerometer and gyroscope) together with increasing computational power have enabled an easier access to contextual information, which proved its value in next generation of the recommender applications. The importance of contextual information has been recognized by researchers in many disciplines, such as ubiquitous and mobile computing, to filter the query results and provide recommendations based on different user status. A context-aware recommendation system (CoARS) provides a personalized service to each individual user, driven by his or her particular needs and interests at any location and anytime. Therefore, a contextual recommendation system changes in real time as a user’s circumstances changes. CoARS is one of the major applications that has been refined over the years due to the evolving geospatial techniques and big data management practices. In this paper, a CoARS is designed and implemented to combine the context information from smartphones’ sensors and user preferences to improve efficiency and usability of the recommendation. The proposed approach combines user’s context information (such as location, time, and transportation mode), personalized preferences (using individuals past behavior), and item-based recommendations (such as item’s ranking and type) to personally filter the item list. The context-aware methodology is based on preprocessing and filtering of raw data, context extraction and context reasoning. This study examined the application of such a system in recommending a suitable restaurant using both web-based and android platforms. The implemented system uses CoARS techniques to provide beneficial and accurate recommendations to the users. The capabilities of the system is evaluated successfully with recommendation experiment and usability test.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Qian Gao ◽  
Pengcheng Ma

Due to the influence of context information on user behavior, context-aware recommendation system (CARS) has attracted extensive attention in recent years. The most advanced context-aware recommendation system maps the original multi-field features into a shared hidden space and then simply connects it to a deep neural network (DNN) or other specially designed networks. However, for different areas, the ability of modeling complex interactions in a sufficiently flexible and explicit way is limited by the simple unstructured combination of feature fields. Therefore, it is hard to get the accurate results of the user behavior prediction. In this paper, a graph structure is used to establish the interaction between context and users/items. Through modeling user behavior, we can explore user preferences in different context environments, so as to make personalized recommendations for users. In particular, we construct a context-user and context-item interactions graph separately. In the interactions graph, each node is composed of a user feature field, an item feature field, and a feature field of different contexts. Different feature fields can interact through edges. Therefore, the task of modeling feature interaction can be transformed into modeling the node interaction on the corresponding graph. To this end, an innovative model called context-aware graph neural network (CA-GNN) model is designed. Furthermore, in order to obtain more accurate and efficient recommendation results, first, we innovatively use the attention mechanism to improve the interpretability of CA-GNN; second, we innovatively use the degree of physical fatigue features which has never been used in traditional CARS as critical contextual feature information into our CA-GNN. We simulated the Food and Yelp datasets. The experimental results show that CA-GNN is better than other methods in terms of root mean square error (RMSE) and mean absolute error (MAE).


2021 ◽  
Vol 12 (1) ◽  
pp. 45
Author(s):  
Soo-Yeon Jeong ◽  
Young-Kuk Kim

A context-aware recommender system can make recommendations to users by considering contextual information such as time and place, not only the scores assigned to items by users. However, as a user preferences matrix is expanded in a multidimensional matrix, data sparsity is maximized. In this paper, we propose a deep learning-based context-aware recommender system that considers the contextual features. Based on existing deep learning models, we combine a neural network and autoencoder to extract characteristics and predict scores in the process of restoring input data. The newly proposed model is able to easily reflect various type of contextual information and predicts user preferences by considering the feature of user, item and context. The experimental results confirm that the proposed method is mostly superior to the existing method in all datasets. Also, for the dataset with data sparsity problem, it was confirmed that the performance of the proposed method is higher than that of existing methods. The proposed method has higher precision by 0.01–0.05 than other recommender systems in a dataset with many context dimensions. And it showed good performance with a high precision of 0.03 to 0.09 in a small dimensional dataset.


Recommendation systems play a crucial role in e-commerce by recommending products that suit for the consumers also providing exact information to users. For the past few decades, researchers used many machine learning techniques on recommender system. In recommender system ML based algorithms providing a better detection of user preferences, item features and users-items. In this way deep learning play an increasingly vital role in review recommender systems, since they used a bunch of discrete values for review. However, a problem arises regarding that feedbacks. Discrete values are those which are hard to describe user’s interests. This problem makes it impossible to specifically model user’s choice for recommendation. Purpose of this paper is to introduce a new novel SNN (Sentiment Neural Network) framework for effective recommendation system. SNN frameworks consider two phases. In first phase of SNN framework, this work introduces NLP techniques for converting unstructured data into structured data. This technique includes pre-processing data, feature extraction, word scoring, polarity classification and sentiment analysis. The second phase of SNN framework used for verifying the polarity classes with the real world examples. SNN structures are not only among the best models with reference to prediction accuracy, they also consider the weighting factor on classifier to reduce the training time. A novel Sentiment Neural Network along with knowledge recommender system is suggested for review features extraction, text classification and analyzing review features in the various domains.


Author(s):  
Z. Bahramian ◽  
R. Ali Abbaspour ◽  
C. Claramunt

Users planning a trip to a given destination often search for the most appropriate points of interest location, this being a non-straightforward task as the range of information available is very large and not very well structured. The research presented by this paper introduces a context-aware tourism recommender system that overcomes the information overload problem by providing personalized recommendations based on the user’s preferences. It also incorporates contextual information to improve the recommendation process. As previous context-aware tourism recommender systems suffer from a lack of formal definition to represent contextual information and user’s preferences, the proposed system is enhanced using an ontology approach. We also apply a spreading activation technique to contextualize user preferences and learn the user profile dynamically according to the user’s feedback. The proposed method assigns more effect in the spreading process for nodes which their preference values are assigned directly by the user. The results show the overall performance of the proposed context-aware tourism recommender systems by an experimental application to the city of Tehran.


2020 ◽  
Author(s):  
Ramachandro Majji

BACKGROUND Cancer is one of the deadly diseases prevailing worldwide and the patients with cancer are rescued only when the cancer is detected at the very early stage. Early detection of cancer is essential as, in the final stage, the chance of survival is limited. The symptoms of cancers are rigorous and therefore, all the symptoms should be studied properly before the diagnosis. OBJECTIVE Propose an automatic prediction system for classifying cancer to malignant or benign. METHODS This paper introduces the novel strategy based on the JayaAnt lion optimization-based Deep recurrent neural network (JayaALO-based DeepRNN) for cancer classification. The steps followed in the developed model are data normalization, data transformation, feature dimension detection, and classification. The first step is the data normalization. The goal of data normalization is to eliminate data redundancy and to mitigate the storage of objects in a relational database that maintains the same information in several places. After that, the data transformation is carried out based on log transformation that generates the patterns using more interpretable and helps fulfill the supposition, and to reduce skew. Also, the non-negative matrix factorization is employed for reducing the feature dimension. Finally, the proposed JayaALO-based DeepRNN method effectively classifies cancer-based on the reduced dimension features to produce a satisfactory result. RESULTS The proposed JayaALO-based DeepRNN showed improved results with maximal accuracy of 95.97%, the maximal sensitivity of 95.95%, and the maximal specificity of 96.96%. CONCLUSIONS The resulted output of the proposed JayaALO-based DeepRNN is used for cancer classification.


Sign in / Sign up

Export Citation Format

Share Document