scholarly journals Organosolv lignin aggregation behaviour of soluble lignin extract from Miscanthus x giganteus at different ethanol concentrations and its influence on the lignin esterification

Author(s):  
Muhammad Hazwan Hamzah ◽  
Steve Bowra ◽  
Philip Cox

Abstract Background Lignin is the second most abundant naturally occurring biopolymer from lignocellulosic biomass. While there are several lignin applications, attempts to add value to lignin are hampered by its inherent complex and heterogenous chemical structure. This work assesses the organosolv lignin aggregates behaviour of soluble lignin extract derived from Miscanthus × giganteus using different ethanol concentrations (50%, 40%, 30%, 20%, 10% and 1%). The effect of two different lignin concentrations using similar ethanol concentration on the efficacy of esterification was studied. Results Overall, particle size of lignin analysis showed that the particle size of lignin aggregates decreased with lower ethanol concentrations. 50% ethanol concentration of soluble lignin extract showed the highest particle size of lignin (3001.8 nm), while 331.7 nm of lignin particle size was recorded at 1% ethanol concentration. Such findings of particle size correlated well with the morphology of the lignin macromolecules. The lignin aggregates appeared to be disaggregated from population of large aggregates to sub-population of small aggregates when the ethanol concentration was reduced. Light microscopy images analysis by ImageJ shows that the average diameter and circularity of the corresponding lignin macromolecules differs according to different ethanol concentrations. The dispersion of lignin aggregates at low ethanol concentration resulted in high availability of hydroxyl group in the soluble lignin extract. The efficacy of the lignin modification via esterification was evidenced directly via FTIR using the similar ethanol concentration of soluble lignin extract at different lignin concentrations. Conclusion This study provided the understanding of detail analysis on particle size determination, microscopic properties and structural insights of lignin aggregates at wider ethanol concentrations. The esterified lignin derived at 5 mg/mL is suggested to expand greater lignin functionality in the preparation of lignin bio-based materials.

Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 845
Author(s):  
Muhammad Hazwan Hamzah ◽  
Steve Bowra ◽  
Philip Cox

This work assesses the behavior of organosolv lignin aggregates derived from Miscanthus x giganteus using different ethanol concentrations (10%, 25%, 50%, and 75% by volume). The percentage of lignin recovery was found to decrease from 75.8% to 71.4% and 25.1%, as the ethanol concentration was increased from 10% to 25% and 50%, respectively. Increasing the ethanol concentration further to 75% led to zero recovery. The purity of the precipitated lignin was consistently found to be ≥90%. Lignin derived from the dried supernatant obtained at 50% ethanol concentration resulted in high lignin purity (51.6%) in comparison with the other ethanol concentrations used. Fourier transform infrared spectroscopy analysis showed that the precipitated lignin and dried supernatant at 50% ethanol concentration possessed the highest peak intensity apportioned to wavenumber of lignin as compared to that of at 25% and 10% ethanol concentrations, and the results linked with the percentage of lignin purity. The results of particle size analysis for precipitated lignin demonstrated particle sizes of 306, 392, and 2050 nm for 10%, 25%, and 50% ethanol concentrations, respectively, and the remaining supernatant with average particle sizes of 1598, 1197, and 875 nm, respectively. These results were verified with the morphology of lignin macromolecules in scanning electron microscopy images. Results of the particle size distribution of lignin revealed that the overall size of lignin aggregates decreased with decreasing ethanol concentration. In summary, these findings suggest that ethanol concentration affected the behavior of lignin aggregates in water–ethanol solution.


2018 ◽  
Vol 3 (1) ◽  
pp. 12 ◽  
Author(s):  
Zaimahwati Zaimahwati ◽  
Yuniati Yuniati ◽  
Ramzi Jalal ◽  
Syahman Zhafiri ◽  
Yuli Yetri

<p>Pada penelitian ini telah dilakukan isolasi dan karakterisasi bentonit alam menjadi nanopartikel montmorillonit. Bentonit alam yang digunakan diambil dari desa Blangdalam, Kecamatan Nisam Kabupaten Aceh Utara.  Proses isolasi meliputi proses pelarutan dengan aquades, ultrasonic dan proses sedimentasi. Untuk mengetahui karakterisasi montmorillonit dilakukan uji FT-IR, X-RD dan uji morfologi permukaan dengan Scanning Electron Microscopy (SEM). Partikel size analyzer untuk menganalisis dan menentukan ukuran nanopartikel dari isolasi bentonit alam. Dari hasil penelitian didapat ukuran nanopartikel montmorillonit hasil isolasi dari bentonit alam diperoleh berdiameter rata-rata 82,15 nm.</p><p><em>In this research we have isolated and characterized natural bentonite into montmorillonite nanoparticles. Natural bentonite used was taken from Blangdalam village, Nisam sub-district, North Aceh district. The isolation process includes dissolving process with aquades, ultrasonic and sedimentation processes.  The characterization of montmorillonite, FT-IR, X-RD and surface morphology test by Scanning Electron Microscopy (SEM). Particle size analyzer to analyze and determine the size of nanoparticles from natural bentonite insulation. From the research results obtained the size of montmorillonite nanoparticles isolated from natural bentonite obtained an average diameter of 82.15 nm.</em></p>


2011 ◽  
Vol 415-417 ◽  
pp. 237-242
Author(s):  
Zhou Da Zhang ◽  
Xue Mei Chen ◽  
Guo Liang Qu

Calcium carbonate nanoparticles (nano-CaCO3) filled powdered styrene-butadiene rubber (P(SBR/CaCO3) was prepared by adding nano-CaCO3 particles, encapsulant and coagulant to styrene-butadiene rubber (SBR) latex by coacervation, and the particle size distribution, structure were studied. Scanning electron microscopy (SEM) was used to investigate the (P(SBR/CaCO3) particle structure, and a powdering model was proposed to describe the powdering process. The process includes: (i) the latex particles associated with the dispersed nano-CaCO3 particles (adsorption process) to form “new particles” and (ii) the formation of P(SBR/CaCO3) by coagulating “new particles”. The SEM results also shown that the nano-CaCO3 and rubber matrix have formed a macroscopic homogenization in the (P(SBR/CaCO3) particles and nano-CaCO3 dispersed uniformly in the rubber matrix with an average diameter of approximately 50 nm.


Author(s):  
Евгений Попов ◽  
Evgeniy Popov

This work is aimed at confirming the adequacy of the probabilistic and statistical approach to determining the aerodynamic resistance coefficient of particles in a flow of the free falling polyfractional material, suggested by the author. The aerodynamic resistance coefficient of particles in a flow of falling material is defined by calculating the probability of finding particles out of air shadows of the neighboring particles. The laboratory experiment was performed on the offered experimental samples of bulk materials having different particle size distribution, but the identical average diameter of particles. The design of a laboratory experimental installation which allows determining the consumption of air, ejected by a polyfractional material flow, was described. The amount of the air, ejected with experimental samples, depends on their particle size distribution that confirms the insufficiency of describing the properties of bulk material only with the average diameter value. The given comparison of results of the analytical calculations with experimental data shows the reliability and adequacy of the calculated values.


Sign in / Sign up

Export Citation Format

Share Document