scholarly journals Brain monitoring using near-infrared spectroscopy to predict outcome after cardiac arrest: a novel phenotype in a rat model of cardiac arrest

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Ryosuke Takegawa ◽  
Kei Hayashida ◽  
Rishabh Choudhary ◽  
Daniel M. Rolston ◽  
Lance B. Becker

AbstractImproving neurological outcomes after cardiac arrest (CA) is the most important patient-oriented outcome for CA research. Near-infrared spectroscopy (NIRS) enables a non-invasive, real-time measurement of regional cerebral oxygen saturation. Here, we demonstrate a novel, non-invasive measurement using NIRS, termed modified cerebral oximetry index (mCOx), to distinguish the severity of brain injury after CA. We aimed to test the feasibility of this method to predict neurological outcome after asphyxial CA in rats. Our results suggest that mCOx is feasible shortly after resuscitation and can provide a surrogate measure for the severity of brain injury in a rat asphyxia CA model.

2021 ◽  
Vol 10 (13) ◽  
pp. 2938
Author(s):  
Małgorzata Barud ◽  
Wojciech Dabrowski ◽  
Dorota Siwicka-Gieroba ◽  
Chiara Robba ◽  
Magdalena Bielacz ◽  
...  

Measurement of cerebral oximetry by near-infrared spectroscopy provides continuous and non-invasive information about the oxygen saturation of haemoglobin in the central nervous system. This is especially important in the case of patients with traumatic brain injuries. Monitoring of cerebral oximetry in these patients could allow for the diagnosis of inadequate cerebral oxygenation caused by disturbances in cerebral blood flow. It could enable identification of episodes of hypoxia and cerebral ischemia. Continuous bedside measurement could facilitate the rapid diagnosis of intracranial bleeding or cerebrovascular autoregulation disorders and accelerate the implementation of treatment. However, it should be remembered that the method of monitoring cerebral oximetry by means of near-infrared spectroscopy also has its numerous limitations, resulting mainly from its physical properties. This paper summarizes the usefulness of monitoring cerebral oximetry by near-infrared spectroscopy in patients with traumatic brain injury, taking into account the advantages and the disadvantages of this technique.


Author(s):  
Gorm Greisen ◽  
Terence Leung ◽  
Martin Wolf

Several instruments implementing spatially resolved near-infrared spectroscopy (NIRS) to monitor tissue oxygenation are now approved for clinical use. The neonatal brain is readily assessible by NIRS and neurodevelopmental impairment is common in children who were in need of intensive care during the neonatal period. It is likely that an important part of the burden of this handicap is due to brain injury induced by hypoxia–ischaemia during intensive care. In particular, this is true for infants born extremely preterm. Thus, monitoring of cerebral oxygenation has considerable potential benefit in this group. The benefit, however, should be weighed against the disturbance to the infant, against the limitations imposed on clinical care and against costs. The ultimate way of demonstrating the ‘added value’ is by a randomized controlled trial. Cerebral oximetry must reduce the risk of a clinically relevant endpoint, such as death or neurodevelopmental handicap. We estimate that such a trial should recruit about 4000 infants to have the power to detect a reduction in brain injury by one-fifth. This illustrates the formidable task of providing first-grade evidence for the clinical value of diagnostic methods. Is it a window of opportunity for the establishment of a rational basis before another technology is added to an already overly complex newborn intensive care?


2020 ◽  
Vol 24 (3) ◽  
pp. 543-549
Author(s):  
A.О. Vlasov

Annotation. Near-infrared spectroscopy (NIRS), non-invasive monitoring of tissue oxygenation in many organs, has potentially high diagnostic and prognostic value in critically ill patients. Aim – to analyze modern scientific data on cerebral oximetry by near infrared spectroscopy in neonatal practice. A selective review of literature science data on Internet databases: Pub Med, UpToDate, Medscape EU and Pediatrics was carried out in retrospect. It has been established that understanding neonatal brain oxygenation may be of great clinical importance, since most neonatal pathology is associated with the brain. Vital monitoring provides important information about the infant's health, but does not offer direct information about oxygenation and brain perfusion. Monitoring brain oxygenation with NIRS, at least during the vulnerable transition period during the first 3 days after birth, provides the clinician with additional important information. It can guide clinical management to prevent brain injury and prevent unnecessary treatment, and can provide important information about the infant’s prognosis. Thus, NIRS is a promising non-invasive technology that provides continuous monitoring of neonatal oxygenation parameters. Significant limitations of the method are the difficulties in the clinical interpretation of regional oxygenation indices, the lack of large-scale studies to determine the normative values of regional oxygenation in newborns and to identify reliable prognostic indicators in violation of regional blood circulation. It is reasonable to expect the results of further research.


Neonatology ◽  
2021 ◽  
pp. 1-6
Author(s):  
Bi Ze ◽  
Lili Liu ◽  
Ge Sang Yang Jin ◽  
Minna Shan ◽  
Yuehang Geng ◽  
...  

<b><i>Background:</i></b> Accurate detection of cerebral oxygen saturation (rSO<sub>2</sub>) may be useful for neonatal brain injury prevention, and the normal range of rSO<sub>2</sub> of neonates at high altitude remained unclear. <b><i>Objective:</i></b> To compare cerebral rSO<sub>2</sub> and cerebral fractional tissue oxygen extraction (cFTOE) at high-altitude and low-altitude areas in healthy neonates and neonates with underlying diseases. <b><i>Methods:</i></b> 515 neonates from low-altitude areas and 151 from Tibet were enrolled. These neonates were assigned into the normal group, hypoxic-ischemic encephalopathy (HIE) group, and other diseases group. Near-infrared spectroscopy was used to measure rSO<sub>2</sub> in neonates within 24 h after admission. The differences of rSO<sub>2</sub>, pulse oxygen saturation (SpO<sub>2</sub>), and cFTOE levels were compared between neonates from low- and high-altitude areas. <b><i>Results:</i></b> (1) The mean rSO<sub>2</sub> and cFTOE levels in normal neonates from Tibet were 55.0 ± 6.4% and 32.6 ± 8.5%, significantly lower than those from low-altitude areas (<i>p</i> &#x3c; 0.05). (2) At high altitude, neonates with HIE, pneumonia (<i>p</i> &#x3c; 0.05), anemia, and congenital heart disease (<i>p</i> &#x3c; 0.05) have higher cFTOE than healthy neonates. (3) Compared with HIE neonates from plain areas, neonates with HIE at higher altitude had lower cFTOE (<i>p</i> &#x3c; 0.05), while neonates with heart disease in plateau areas had higher cFTOE than those in plain areas (<i>p</i> &#x3c; 0.05). <b><i>Conclusions:</i></b> The rSO<sub>2</sub> and cFTOE levels in normal neonates from high-altitude areas are lower than neonates from the low-altitude areas. Lower cFTOE is possibly because of an increase in blood flow to the brain, and this may be adversely affected by disease states which may increase the risk of brain injury.


Sign in / Sign up

Export Citation Format

Share Document