scholarly journals Analytical methodology for the analysis of vibration for unconstrained discrete systems and applications to impedance control of redundant robots

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Imin Kao ◽  
Carlos Saldarriaga

AbstractThis paper presents a general methodology for the analysis and synthesis of a positive semi-definite system described by mass, damping and stiffness matrices that is often encountered in impedance control in robotics research. This general methodology utilizes the fundamental kinematic concept of rigid-body and non-rigid-body motions of which all motions consist. The rigid-body mode results in no net change in the potential energy from the stiffness matrix of the multiple degree-of-freedom (DoF) discrete mechanical system. Example of an unconstrained discrete mechanical system is presented to illustrate the theoretical principle as applied in obtaining the free and forced vibration responses, as well as the dynamic characteristics of the system in natural frequency, $$\omega_n$$ ω n and damping ratio, $$\zeta$$ ζ . In addition, the methodology is applied to the impedance control of redundant robots. The rigid-body mode is equivalent to the motions of a redundant robot which result in no net change in potential energy, also called the zero-potential or ZP mode, of impedance control. Example of a redundant robot is used to demonstrate the application of the methodology in robotics. The dynamic characteristics of $$\omega _n$$ ω n and $$\zeta$$ ζ in the modal space are analyzed, which can be synthesized to modulate the damping of the system analytically.

2014 ◽  
Vol 657 ◽  
pp. 644-648 ◽  
Author(s):  
Andrzej Dymarek ◽  
Tomasz Dzitkowski

The paper presents the use of synthesis methods to determine the parameters of passive vibration reduction in mechanical systems. Passive vibration reduction in a system is enabled by units called dampers whose values are determined on the basis of the method formulated and formalized by the authors. The essence of the method are, established at the beginning of a task, dynamic characteristics in the form of the resonance and anti-resonance frequencies, and amplitudes of displacement, velocity or acceleration of vibration.


2016 ◽  
Vol 13 (6) ◽  
pp. 172988141666678
Author(s):  
Hongxing Wang ◽  
Ruifeng Li ◽  
Yunfeng Gao ◽  
Chuqing Cao ◽  
Lianzheng Ge

A whole resolved motion rate control algorithm designed for mobile dual-arm redundant robots is presented in this article. Based on this algorithm, the end-effector movements of the dual arms of the mobile dual-arm redundant robot can be decomposed into the movements of the two driving wheels of the differential driving platform and the movements of the dual-arm each joint of this robot harmoniously. The influence of the redundancies of the single- and dual-arm robots on the operation based on the fixed- and differential-driving platforms, which are then based on the whole resolved motion rate control algorithm, is studied after building their motion models. Some comparisons are made to show the advantages of this algorithm on the entire modeling of the complicated robotic system and the influences of the redundancy. First, the comparison of the simulation results between the fixed single-arm robot and the mobile single-arm robot is presented. Second, a comparison of the simulation results between the mobile single-arm robot and the mobile dual-arm robots is shown. Compared with the mobile single-arm robot and the fixed dual-arm robot based on this algorithm, the mobile dual-arm robot has more redundancy and can simultaneously track and operate different objects. Moreover, the mobile dual-arm redundant robot has better smoothness, more flexibility, larger operational space, and more harmonious cooperation between the two arms and the differential driving platform during the entire mobile operational process.


Robotica ◽  
1986 ◽  
Vol 4 (4) ◽  
pp. 263-267 ◽  
Author(s):  
Ronald L. Huston ◽  
Timothy P. King

SUMMARYThe dynamics of “simple, redundant robots” are developed. A “redundant” robot is a robot whose degrees of freedom are greater than those needed to perform a given kinetmatic task. A “simple” robot is a robot with all joints being revolute joints with axes perpendicular or parallel to the arm segments. A general formulation, and a solution algorithm, for the “inverse kinematics problem” for such systems, is presented. The solution is obtained using orthogonal complement arrays which in turn are obtained from a “zero-eigenvalues” algorithm. The paper concludes with an assertion that this solution, called the “natural dynamics solution,” is optimal in that it requires the least energy to drive the robot.


Author(s):  
Wenjing Wang ◽  
Yueqing Yu

Dynamic effects are very important to improving the design of compliant mechanisms. An investigation on the dynamic characteristics of planar compliant parallel-guiding mechanism is presented. Based on the pseudo-rigid-body model, the dynamic model of planar compliant parallel-guiding mechanisms is developed using the numerical methods at first. The natural frequency is then calculated, and frequency characteristics of this mechanism are studied. The numerical results show the accuracy of the proposed method for dynamic modeling of compliant mechanisms, and the relationships between the natural frequency and design parameters are analyzed clearly.


Author(s):  
Jin Woong Ha ◽  
Ji Ho Myung ◽  
Jhin Ik Suk

In tilting pad bearing design process, the selection of the proper configuration type of either a Load-Between-Pad (LBP) or Load-On-Pad (LOP) as well as preload and pivot offset conditions is to be carefully considered. Also the bearing needs to be designed in order to be suited for the rotor-bearing system and operating condition. In this paper, it is observed that the static and dynamic characteristics of a five pad tilting pad bearing for the LBP and LOP configurations are influenced by the variation of preload and pivot offset. In this context, rotor dynamic analysis of the 5 MW industrial gas turbine supported by the tilting pad bearing at the front and roller bearing at the rear is carried out based on the dynamic coefficients of the tilting pad bearing investigated. The result shows that two rigid body critical modes experience various changes according to the influence of the tilting pad bearing uniquely applied to one side of this machine. Mainly, the second critical speed, the rigid body mode of conical shape with high whirling in the tilting pad bearing, is significantly changed by preload and pivot offset regardless of the LBP and LOP configurations. And the first critical mode, the rigid body mode of conical shape with high whirling in the roller bearing, is sensitively affected by preload applied to the LOP configuration and by its asymmetric dynamic properties.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Haoyu Shen ◽  
Hongtao Wu ◽  
Bai Chen ◽  
Yanjie Jiang ◽  
Cheng Yan

To deal with the problem of obstacle avoidance for redundant robots, an obstacle avoidance algorithm based on the internal motion of the 7-DOF redundant anthropomorphic arm is presented. The motion of that critical points move away from the closest points on the obstacles is defined as obstacle avoiding motion. Two transitioning variables were used to make a smooth, continuous transition between the primary and the secondary tasks. Using this approach, the robot can get the target configuration while avoiding the obstacles. Finally, the validity of the obstacle avoidance algorithm based on transitioning between tasks is manifested by simulation. The results show that, for the obstacle avoiding problem, the redundant robot not only can realize the obstacle avoidance, but also prevents the conflict between tasks by the proposed approach.


Author(s):  
Farhad Aghili

This paper presents a method to control a manipulator system grasping a rigid-body payload so that the motion of the combined system in consequence of external applied forces to be the same as another free-floating rigid-body (with different inertial properties). This allows zero-g emulation of a scaled spacecraft prototype under the test in a 1-g laboratory environment. The controller consisting of motion feedback and force/moment feedback adjusts the motion of the test spacecraft so as to match that of the flight spacecraft. The stability of the overall system is analytically investigated, and the results show that the system remains stable provided that the inertial properties of two spacecraft are different and that an upperbound on the norm of the inertia ratio of the payload to manipulator is respected. Important practical issues such as calibration and sensitivity analysis to sensor noise and quantization are also presented. Finally, experimental results are presented.


Sign in / Sign up

Export Citation Format

Share Document