scholarly journals Assessing site-safeguard effectiveness and habitat preferences of Bar-headed Geese (Anser indicus) at their stopover sites within the Qinghai-Tibet Plateau using GPS/GSM telemetry

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Junjian Zhang ◽  
Yanbo Xie ◽  
Laixing Li ◽  
Nyambayar Batbayar ◽  
Xueqin Deng ◽  
...  

Abstract Background The Bar-headed Goose (Anser indicus) breeds across the high plains and plateau of Central Asia and winters in the Qinghai-Tibet Plateau (QTP), the Yunnan-Guizhou Plateau and the Indian sub-continent. Of the two recognized discrete flyways of the Bar-headed Goose, the Eastern Tibetan Flyway (ETF) is the larger, comprising at least six migration routes. However, we remain ignorant about their migratory connectivity, habitat use and effectiveness of site-safeguard mechanisms set in place for the species. Methods We tracked 30 ETF Bar-headed Geese from Chinese and Mongolian breeding areas to their wintering grounds using GPS/GSM transmitters, to determine their migration routes and stopover staging patterns within the QTP, overlaying these upon GIS layers of protected area status and habitat type, to model their habitat selection. Results In total, 14 tagged Bar-headed Geese provided information on their entire autumn migration and 4 geese on their entire spring migration. Qinghai Lake marked birds overwintered in the QTP (n = 2), geese tagged in Mongolia wintered either in the QTP (n = 3) or in India/Bangladesh (n = 9), representing three of the migration routes within the ETF. In total, tagged birds staged at 79 different stopover sites within QTP in autumn and 23 in spring, of which 65% (autumn) and 59% (spring) of all fixes fell within the boundaries of either National Nature Reserves (NNRs) or Important Birds Areas (IBAs) in the QTP. Bar-headed Geese predominantly occurred on four land-cover types: grassland (mostly by day), water bodies (at night), wetlands and bare substrates (salt flats, dry lake/river substrates and plough) with little change in proportion. Generalized linear mixed models comparing presence with pseudo-absence data suggested geese strongly selected for wetlands as staging habitat, avoiding bare substrates in spring. Conclusions Based on our limited observations of these tagged geese, this study is the first to show that the current designated National Nature Reserves in place in the staging areas within the QTP appear adequate to protect this increasing population. In addition, Hala Lake in Qinghai Province and adjacent areas used as initial QTP staging during autumn migration (currently outside of designated as NNRs/IBAs) are recommended for protection, based on their use by tagged birds from this study. Habitat modelling confirmed the importance of natural wetlands as feeding areas and safe areas of open water as roosting places.

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Yaonan Zhang ◽  
Meiyu Hao ◽  
John Y. Takekawa ◽  
Fumin Lei ◽  
Baoping Yan ◽  
...  

The autumn migration routes of bar-headed geese captured before the 2008 breeding season at Qinghai Lake, China, were documented using satellite tracking data. To assess how the migration strategies of bar-headed geese are influenced by environmental conditions, the relationship between migratory routes, temperatures, and vegetation coverage at stopovers sites estimated with the Normalized Difference Vegetation Index (NDVI) were analyzed. Our results showed that there were four typical migration routes in autumn with variation in timing among individuals in start and end times and in total migration and stopover duration. The observed variation may be related to habitat type and other environmental conditions along the routes. On average, these birds traveled about 1300 to 1500 km, refueled at three to six stopover sites and migrated for 73 to 83 days. The majority of the habitat types at stopover sites were lake, marsh, and shoal wetlands, with use of some mountainous regions, and farmland areas.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9715
Author(s):  
Ye Wang ◽  
Chunrong Mi ◽  
Yumin Guo

Background The black-necked crane (Grus nigricollis) is a vulnerable species and the only species that lives in the plateau. Five migration routes of different populations have been identified, but for cranes wintering in Nyingchi Prefecture, Tibet, the migration route and breeding/summering area are still unknown. The aim of this study was to investigate the spatio-temporal migration patterns of black-necked cranes in this area and to identify important areas for conservation. Methods In 2016, we fitted seven black-necked cranes in Nyingchi with GPS-GSM satellite transmitters to record their migration routes. We used ArcGIS 10.2 to visualize important stopover sites and the ‘ggplot’ function in R to analyze the migration patterns. Results From March 2016 to May 2019, we recorded nine spring migration and four autumn migration tracks from five individuals. Four individuals spent the breeding/summering season in Qinghai Lake, while the other spent the breeding/summering season in the Jinzihai Wetland of Dulan County, Qinghai Province. Detailed spatio-temporal information showed that the spring migration lasted 8.7 ± 4.6 days and covered 1,182.5 ± 90.4 km, while the autumn migration lasted 30 ± 10.6 days and covered 1,455.7 ± 138 km. Basom Lake and the Shazhuyu River were the most important stopover sites during the spring and autumn migrations, respectively. The cranes spent 4.4 ± 3.7 days in Basom Lake and 26.3 ± 10.7 days in the Shazhuyu River. The black-necked cranes mainly migrated during the daytime (>85 % of the fly points), and 81 % (17/21) of all stopover and roosting sites were in the valley or at lakeside swamps. Only 17.7% (516 / 2,914) of the data points for stopover and roosting sites were in protected areas. Main conclusions Our study revealed the breeding/summering areas and migration routes of the black-necked cranes wintering in Nyingchi. These results contribute to a better understanding of the annual spatio-temporal migration patterns and the development of conservation plans for this vulnerable species.


2016 ◽  
Vol 4 (3) ◽  
Author(s):  
Wen Wang ◽  
Si-Si Zheng ◽  
Hao Sun ◽  
Jian Cao ◽  
Fang Yang ◽  
...  

Bacillus megaterium is a soil-inhabiting Gram-positive bacterium that is routinely used in industrial applications for recombinant protein production and bioremediation. Studies involving Bacillus megaterium isolated from waterfowl are scarce. Here, we report a 6.26-Mbp draft genome sequence of Bacillus megaterium BHG1.1, which was isolated from feces of a bar-headed goose.


2019 ◽  
Vol 66 (4) ◽  
pp. 355-362 ◽  
Author(s):  
Fanjuan Meng ◽  
Xin Wang ◽  
Nyambayar Batbayar ◽  
Tseveenmyadag Natsagdorj ◽  
Batmunkh Davaasuren ◽  
...  

Abstract While many avian populations follow narrow, well-defined “migratory corridors,” individuals from other populations undertake highly divergent individual migration routes, using widely dispersed stopover sites en route between breeding and wintering areas, although the reasons for these differences are rarely investigated. We combined individual GPS-tracked migration data from Mongolian-breeding common shelduck Tadorna tadorna and remote sensing datasets, to investigate habitat selection at inland stopover sites used by these birds during dispersed autumn migration, to explain their divergent migration patterns. We used generalized linear mixed models to investigate population-level resource selection, and generalized linear models to investigate stopover-site-level resource selection. The population-level model showed that water recurrence had the strongest positive effect on determining birds’ occupancy at staging sites, while cultivated land and grassland land cover type had strongest negative effects; effects of other land cover types were negative but weaker, particularly effects of water seasonality and presence of a human footprint, which were positive but weak or non-significant, respectively. Although stopover-site-level models showed variable resource selection patterns, the variance partitioning and cross-prediction AUC scores corroborated high inter-individual consistency in habitat selection at inland stopover sites during the dispersed autumn migration. These results suggest that the geographically widespread distribution (and generally rarity) of suitable habitats explained the spatially divergent autumn migrations of Mongolian breeding common shelduck, rather than the species showing flexible autumn staging habitat occupancy.


2016 ◽  
Vol 24 (1) ◽  
pp. 128-149 ◽  
Author(s):  
Csaba Pigniczki ◽  
Jelena Kralj ◽  
Stefano Volponi ◽  
Antun Žuljević ◽  
Mohamed-Ali Dakhli ◽  
...  

Abstract Understanding the migration routes of the Central European Spoonbill population is important for their conservation. Here we analysed movements of 3186 individuals of Eurasian Spoonbills marked with colour rings in the Carpathian Basin (Hungary, Croatia and Serbia) between 2003 and 2015, and a satellite tagged individual, which was equipped in Italy in 2013, and later moved to the Carpathian Basin. Migration routes of these Spoonbills predominantly followed the Adriatic Flyway, however, some birds were also found to both east and west from this flyway. We identified 59 stopover sites, 55 of which were located along the Adriatic Flyway. Colourringed juveniles (1cy), on average, spent 4.0±0.9 (SE) days on the stopover sites along the Adriatic Flyway during autumn migration, while non-juveniles (> 1cy) spent 2.6±1.0 (SE) days during autumn and 2.1±0.4 (SE) days during spring migration there. These durations were not significantly different. Duration of stops of the satellite tracked individual was between 7 and 15 days during autumn and between 1 and 12 days during spring migration. Our results indicate the existence of two alternative routes of the Adriatic Flyway between the Carpathian Basin and the wintering areas in southern Italy and the central part of coastal North-Africa. The North-Adriatic Flyway includes stopover sites in north-eastern Italy at the river mouth of River Isonzo, Lagunes of Venice and wetlands around River Po. The South Adriatic Flyway leads through the Balkan Peninsula, with stopover sites at the karst lakes of Bosnia and Herzegovina, mouth of the river Neretva (Croatia), Ulcinj Salinas (Montenegro) and wetlands in Gulf of Manfredonia (Italy). This hypothesis was also supported by the migration of the satellite tagged individual, the paths of which was described here in detail. The average coordinates of spring and autumn stopover sites were located at different parts of the flyway: it was in south-western Italy during autumn migration, while it was close to the western coast of the Balkan Peninsula during spring migration. We found examples for Spoonbills using the same migration paths along the same route year by year on both spring and autumn migration, but also noticed shifts between routes. Some observations indicate that individuals may show site fidelity to stopover sites between years, although the sample size was low for statistical significance.


Sign in / Sign up

Export Citation Format

Share Document