scholarly journals Design and 3D printing of variant pediatric heart models for training based on a single patient scan

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Carina Hopfner ◽  
Andre Jakob ◽  
Anja Tengler ◽  
Maximilian Grab ◽  
Nikolaus Thierfelder ◽  
...  

Abstract Background 3D printed models of pediatric hearts with congenital heart disease have been proven helpful in simulation training of diagnostic and interventional catheterization. However, anatomically accurate 3D printed models are traditionally based on real scans of clinical patients requiring specific imaging techniques, i.e., CT or MRI. In small children both imaging technologies are rare as minimization of radiation and sedation is key. 3D sonography does not (yet) allow adequate imaging of the entire heart for 3D printing. Therefore, an alternative solution to create variant 3D printed heart models for teaching and hands-on training has been established. Methods In this study different methods utilizing image processing and computer aided design software have been established to overcome this shortage and to allow unlimited variations of 3D heart models based on single patient scans. Patient-specific models based on a CT or MRI image stack were digitally modified to alter the original shape and structure of the heart. Thereby, 3D hearts showing various pathologies were created. Training models were adapted to training level and aims of hands-on workshops, particularly for interventional cardiology. Results By changing the shape and structure of the original anatomy, various training models were created of which four examples are presented in this paper: 1. Design of perimembranous and muscular ventricular septal defect on a heart model with patent ductus arteriosus, 2. Series of heart models with atrial septal defect showing the long-term hemodynamic effect of the congenital heart defect on the right atrial and ventricular wall, 3. Implementation of simplified heart valves and addition of the myocardium to a right heart model with pulmonary valve stenosis, 4. Integration of a constructed 3D model of the aortic valve into a pulsatile left heart model with coarctation of the aorta. All presented models have been successfully utilized and evaluated in teaching or hands-on training courses. Conclusions It has been demonstrated that non-patient-specific anatomical variants can be created by modifying existing patient-specific 3D heart models. This way, a range of pathologies can be modeled based on a single CT or MRI dataset. Benefits of designed 3D models for education and training purposes have been successfully applied in pediatric cardiology but can potentially be transferred to simulation training in other medical fields as well.

2020 ◽  
Author(s):  
Carina Hopfner ◽  
Andre Jakob ◽  
Anja Ingrid Tengler ◽  
Maximilian Grab ◽  
Nikolaus Thierfelder ◽  
...  

Abstract Background: 3D printed models of pediatric hearts with congenital heart disease (CHD) have been proven helpful in simulation training of diagnostic and interventional catheterization. However, anatomically accurate 3D printed models are traditionally based on real 2D scans of patients requiring specific imaging techniques, i.e. computer tomography (CT) or magnetic resonance imaging (MRI). In small children both imaging technologies often require deep sedation and involve radiation (CT) being of special impact in this population. Hence, cardiac image data acquired by these invasive technologies is rare in pediatrics where minimization of radiation and sedation is key. Therefore, an alternative solution to create variant 3D printed heart models for teaching and hands-on training has been established. Methods: In this study different methods utilizing image processing and computer aided design (software: Mimics Innovation Suite, Materialise NV) have been established to overcome this shortage and to allow unlimited variations of 3D heart models based on a single patient scan. Patient-specific models based on a CT or MRI image stack were modified by performing virtual engineering on the original shape and structure of the heart. Thereby, 3D hearts including several pathological findings were created and CHD training models were adapted to training level and aims of hands-on classes, particularly for invasive procedures such as interventional cardiology. Results: By changing the shape and structure of the 3D anatomy various training models were created of which four examples are presented in this paper: 1. a heart model with a patent ductus arteriosus (PDA) augmented by perimembranous ventricular septal defect (pmVSD) and muscular ventricular septal defect (mVSD), 2. a model of solely the right heart with pulmonary valve stenosis (PS) augmented by the left heart and myocardium, 3. a series of heart models with atrial septal defect (ASD) showing the hemodynamic effect on the right atrial and ventricular wall, 4. a model of solely the left heart with isthmus stenosis augmented with an engineered aortic valve. All presented models have been successfully utilized in teaching or hands-on training courses. Conclusions: It has been demonstrated that structure and shape of 3D heart models can be modified virtually by engineering on anatomy. Therefore, anatomical variants can be created without the necessity for real, patient-specific CT or MRI imaging. Further investigations are required to evaluate the resemblance of reality of non-patient-specific 3D models and to prove the effectiveness of training using these designed heart models.


2021 ◽  
Vol 7 ◽  
Author(s):  
Jasamine Coles-Black ◽  
Damien Bolton ◽  
Jason Chuen

Introduction: 3D printed patient-specific vascular phantoms provide superior anatomical insights for simulating complex endovascular procedures. Currently, lack of exposure to the technology poses a barrier for adoption. We offer an accessible, low-cost guide to producing vascular anatomical models using routine CT angiography, open source software packages and a variety of 3D printing technologies.Methods: Although applicable to all vascular territories, we illustrate our methodology using Abdominal Aortic Aneurysms (AAAs) due to the strong interest in this area. CT aortograms acquired as part of routine care were converted to representative patient-specific 3D models, and then printed using a variety of 3D printing technologies to assess their material suitability as aortic phantoms. Depending on the technology, phantoms cost $20–$1,000 and were produced in 12–48 h. This technique was used to generate hollow 3D printed thoracoabdominal aortas visible under fluoroscopy.Results: 3D printed AAA phantoms were a valuable addition to standard CT angiogram reconstructions in the simulation of complex cases, such as short or very angulated necks, or for positioning fenestrations in juxtarenal aneurysms. Hollow flexible models were particularly useful for device selection and in planning of fenestrated EVAR. In addition, these models have demonstrated utility other settings, such as patient education and engagement, and trainee and anatomical education. Further study is required to establish a material with optimal cost, haptic and fluoroscopic fidelity.Conclusion: We share our experiences and methodology for developing inexpensive 3D printed vascular phantoms which despite material limitations, successfully mimic the procedural challenges encountered during live endovascular surgery. As the technology continues to improve, 3D printed vascular phantoms have the potential to disrupt how endovascular procedures are planned and taught.


Symbrachydactyly is a genetical problem occurred to newborn where the newborn experienced underdeveloped or shorten fingers. This condition will limit their normal as even a simple task of holding an item or pushing a button. A device is needed to help them gain a better life. The aim of this project is to fabricate a customized prosthesis hand using 3D printing technology at minimum cost. The proposed prosthetic was not embedded with any electrical component. The patient can only use the wrist to control the prosthetic part which is the prosthetic fingers. The prosthetic hand was also being developed with the patient specific features, which the initial design stage was adapted from a person’s hand geometry using a 3D scanner. Next the model of the prosthesis was analyzed computationally to predict the performance of the product. Different material properties are considered in the analysis to present Polylactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) materials. Then, the prosthesis was fabricated using the 3D printing. The results suggested that PLA material indicated better findings and further be fabricated.


Author(s):  
Chia-An Wu ◽  
Andrew Squelch ◽  
Zhonghua Sun

Aim: To determine a printing material that has both elastic property and radiology equivalence close to real aorta for simulation of endovascular stent graft repair of aortic dissection. Background: With the rapid development of three-dimensional (3D) printing technology, a patient-specific 3D printed model is able to help surgeons to make better treatment plan for Type B aortic dissection patients. However, the radiological properties of most 3D printing materials have not been well characterized. This study aims to investigate the appropriate materials for printing human aorta with mechanical and radiological properties similar to the real aortic computed tomography (CT) attenuation. Objective: Quantitative assessment of CT attenuation of different materials used in 3D printed models of aortic dissection for developing patient-specific 3D printed aorta models to simulate type B aortic dissection. Method: A 25-mm length of aorta model was segmented from a patient’s image dataset with diagnosis of type B aortic dissection. Four different elastic commercial 3D printing materials, namely Agilus A40 and A50, Visijet CE-NT A30 and A70 were selected and printed with different hardness. Totally four models were printed out and conducted CT scanned twice on a 192-slice CT scanner using the standard aortic CT angiography protocol, with and without contrast inside the lumen.Five reference points with region of interest (ROI) of 1.77 mm2 were selected at the aortic wall and intimal flap and their Hounsfield units (HU) were measured and compared with the CT attenuation of original CT images. The comparison between the patient’s aorta and models was performed through a paired-sample t-test to determine if there is any significant difference. Result: The mean CT attenuation of aortic wall of the original CT images was 80.7 HU. Analysis of images without using contrast medium showed that the material of Agilus A50 produced the mean CT attenuation of 82.6 HU, which is similar to that of original CT images. The CT attenuation measured at images acquired with other three materials was significantly lower than that of original images (p<0.05). After adding contrast medium, Visijet CE-NT A30 had an average CT attenuation of 90.6 HU, which is close to that of the original images with statistically significant difference (p>0.05). In contrast, the CT attenuation measured at images acquired with other three materials (Agilus A40, A50 and Visiject CE-NT A70) was 129 HU, 135 HU and 129.6 HU, respectively, which is significantly higher than that of original CT images (p<0.05). Conclusion: Both Visijet CE-NT and Agilus have tensile strength and elongation close to real patient’s tissue properties producing similar CT attenuation. Visijet CE-NT A30 is considered the appropriate material for printing aorta to simulate contrast-enhanced CT imaging of type B aortic dissection. Due to lack of body phantom in the experiments, further research with simulation of realistic anatomical body environment should be conducted.


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1577
Author(s):  
Zhonghua Sun

Three-dimensional (3D) printing has been increasingly used in medicine with applications in many different fields ranging from orthopaedics and tumours to cardiovascular disease. Realistic 3D models can be printed with different materials to replicate anatomical structures and pathologies with high accuracy. 3D printed models generated from medical imaging data acquired with computed tomography, magnetic resonance imaging or ultrasound augment the understanding of complex anatomy and pathology, assist preoperative planning and simulate surgical or interventional procedures to achieve precision medicine for improvement of treatment outcomes, train young or junior doctors to gain their confidence in patient management and provide medical education to medical students or healthcare professionals as an effective training tool. This article provides an overview of patient-specific 3D printed models with a focus on the applications in cardiovascular disease including: 3D printed models in congenital heart disease, coronary artery disease, pulmonary embolism, aortic aneurysm and aortic dissection, and aortic valvular disease. Clinical value of the patient-specific 3D printed models in these areas is presented based on the current literature, while limitations and future research in 3D printing including bioprinting of cardiovascular disease are highlighted.


1970 ◽  
Vol 24 (1) ◽  
pp. 34-37
Author(s):  
NN Fatema ◽  
SMM Rahman ◽  
MR Karim ◽  
M Haque

Atrial septal defect (ASD) and patent ductus arteriosus (PDA) are commonly encountered problems and constitute about 20% of all congenital heart lesions. Association of these two conditions in a single patient is not very uncommon. Both these conditions can be treated by placing intracardiac devices. Double interventional closure of Atrial Septal Defect (secundum type) and Patent Ductus Arteriosus was performed in single sitting in a 12 year-old girl in Catheterization Laboratory of CMH Dhaka. This is the first ever-reported double interventional closure of two separate diseases in a single patient in single setting, which led writing this report. (J Bangladesh Coll Phys Surg 2006; 24: 34-37)


2019 ◽  
Vol 8 (4) ◽  
pp. 522 ◽  
Author(s):  
Sun ◽  
Lau ◽  
Wong ◽  
Yeong

Patient-specific three-dimensional (3D) printed models have been increasingly used in cardiology and cardiac surgery, in particular, showing great value in the domain of congenital heart disease (CHD). CHD is characterized by complex cardiac anomalies with disease variations between individuals; thus, it is difficult to obtain comprehensive spatial conceptualization of the cardiac structures based on the current imaging visualizations. 3D printed models derived from patient’s cardiac imaging data overcome this limitation by creating personalized 3D heart models, which not only improve spatial visualization, but also assist preoperative planning and simulation of cardiac procedures, serve as a useful tool in medical education and training, and improve doctor–patient communication. This review article provides an overall view of the clinical applications and usefulness of 3D printed models in CHD. Current limitations and future research directions of 3D printed heart models are highlighted.


2017 ◽  
Vol 2 (2) ◽  
pp. 98 ◽  
Author(s):  
Guruprasad Kuppu Rao ◽  
Tanmay Shah ◽  
Vijay Dayanand Shetty ◽  
B. Ravi

<p>Management of bone and joint injuries is commonly done by immobilisation using plaster/fibreglass casts. This study describes design and fabrication of patient specific cast using 3D printing.  The 3D printed cast while being patient friendly is superior to earlier casts in healing efficacy and hence redefines the joint immobilisation practice. We present here a case of “walk on brace” design and fabrication using 3D printing. The custom design of ankle immobilisation cast was done for an 18-year-old boy having tibia bone fracture during gymnastic activity. The workflow comprises of anatomical data acquisition, CAD, 3D printing, post processing and clinical approval for use. Additional features such as straps, anti-slip inner surface and tread for floor grip were incorporated in the design. </p>


Sign in / Sign up

Export Citation Format

Share Document