scholarly journals Assessment of four strain energy decomposition methods for phase field fracture models using quasi-static and dynamic benchmark cases

2022 ◽  
Vol 6 (1) ◽  
Author(s):  
Shuaifang Zhang ◽  
Wen Jiang ◽  
Michael R. Tonks

AbstractStrain energy decomposition methods in phase field fracture models separate strain energy that contributes to fracture from that which does not. However, various decomposition methods have been proposed in the literature, and it can be difficult to determine an appropriate method for a given problem. The goal of this work is to facilitate the choice of strain decomposition method by assessing the performance of three existing methods (spectral decomposition of the stress or the strain and deviatoric decomposition of the strain) and one new method (deviatoric decomposition of the stress) with several benchmark problems. In each benchmark problem, we compare the performance of the four methods using both qualitative and quantitative metrics. In the first benchmark, we compare the predicted mechanical behavior of cracked material. We then use four quasi-static benchmark cases: a single edge notched tension test, a single edge notched shear test, a three-point bending test, and a L-shaped panel test. Finally, we use two dynamic benchmark cases: a dynamic tensile fracture test and a dynamic shear fracture test. All four methods perform well in tension, the two spectral methods perform better in compression and with mixed mode (though the stress spectral method performs the best), and all the methods show minor issues in at least one of the shear cases. In general, whether the strain or the stress is decomposed does not have a significant impact on the predicted behavior.

Author(s):  
Meng Fan ◽  
Yan Jin ◽  
Thomas Wick

AbstractIn this work, we develop a mixed-mode phase-field fracture model employing a parallel-adaptive quasi-monolithic framework. In nature, failure of rocks and rock-like materials is usually accompanied by the propagation of mixed-mode fractures. To address this aspect, some recent studies have incorporated mixed-mode fracture propagation criteria to classical phase-field fracture models, and new energy splitting methods were proposed to split the total crack driving energy into mode-I and mode-II parts. As extension in this work, a splitting method for masonry-like materials is modified and incorporated into the mixed-mode phase-field fracture model. A robust, accurate and efficient parallel-adaptive quasi-monolithic framework serves as basis for the implementation of our new model. Three numerical tests are carried out, and the results of the new model are compared to those of existing models, demonstrating the numerical robustness and physical soundness of the new model. In total, six models are computationally analyzed and compared.


2014 ◽  
Vol 969 ◽  
pp. 228-233 ◽  
Author(s):  
Petr Konečný ◽  
Václav Veselý ◽  
Petr Lehner ◽  
Daniel Pieszka ◽  
Libor Žídek

The paper is focusing on the investigation of the effective crack length obtained from bending test on concrete notched beams with the complementary measurements of ultrasound passing time through the tested concrete specimen. The ultrasound passing time measurements are performed on several stages of the fracture process along the specimen ligament for each tested notched beam. Gained results of the time of ultrasound pulse needed to pass through specimens' failure zone, i.e. its dependence on the crack length or opening, provide information which may help to identify the process of crack formation without the visible indications. The fracture tests are conducted for a set of specimens differing in the notch length. Changes of the ultrasound passing times with increasing effective crack length are observed and discussed.


Author(s):  
Claudio Ruggieri ◽  
Rodolfo F. de Souza

This work addresses the development of wide range compliance solutions for tensile-loaded and bend specimens based on CMOD. The study covers selected standard and non-standard fracture test specimens, including the compact tension C(T) configuration, the single edge notch tension SE(T) specimen with fixed-grip loading (clamped ends) and the single edge notch bend SE(B) geometry with varying specimen spam over width ratio and loaded under 3-point and 4-point flexural configuration. Very detailed elastic finite element analysis in 2-D setting are conducted on fracture models with varying crack sizes to generate the evolution of load with displacement for those configurations from which the dependence of specimen compliance on crack length, specimen geometry and loading mode is determined. The extensive numerical analyses conducted here provide a larger set of solutions upon which more accurate experimental evaluations of crack size changes in fracture toughness and fatigue crack growth testing can be made.


Author(s):  
Akinori Tamura ◽  
Kenichi Katono

Abstract Two-phase flows including a phase change such as liquid-vapor flows play an important role in many industrial applications. A deeper understanding of the phase change phenomena is required to improve performance and safety of nuclear power plants. For this purpose, we developed a phase change simulation method based on the phase field method (PFM). Low computational efficiency of the conventional PFM based on the Cahn-Hilliard equation is an obstacle in practical simulations. To resolve this problem, we presented a new PFM based on the conservative Allen-Cahn equation including a phase change model. The wettability also needs to be considered in the phase change simulation. When we apply the conventional wetting boundary condition to the conservative Allen-Cahn equation, there is a problem that the mass of each phase is not conserved on the boundary. To resolve this issue, we developed the mass correction method which enables mass conservation in the wetting boundary. The proposed PFM was validated in benchmark problems. The results agreed well with the theoretical solution and other simulation results, and we confirmed that this PFM is applicable to the two-phase flow simulation including the phase change. We also investigated the computational efficiency of the PFM. In a comparison with the conventional PFM, we found that our proposed PFM was more than 100 times faster. Since computational efficiency is an important factor in practical simulations, the proposed PFM will be preferable in many industrial simulations.


2018 ◽  
Vol 1067 ◽  
pp. 072007
Author(s):  
A Miura ◽  
T Miyao ◽  
K Futatsukawa ◽  
S Fukuoka ◽  
Y Kawane ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document