scholarly journals Reliability sensitivity of wind power system considering correlation of forecast errors based on multivariate NSTPNT method

Author(s):  
Wangchao Dong ◽  
Shenghu Li

AbstractThe impact of wind power forecast errors (WPFEs) on power system reliability can be quantified by a sensitivity model, which helps to determine the importance of different wind farms. However, the unknown distribution and correlation of WPFEs make it difficult to calculate the reliability sensitivity. The existing univariate non-standard third-order polynomial normal transformation (NSTPNT) expresses the reliability sensitivity of WPFEs by a normal random variable with explicit distribution, and is not suitable for multiple wind farms with correlated forecast errors. In this paper, the univariate NSTPNT method is extended to the multivariate by deriving the analytical expression of the correlation coefficients before and after the transformation, to establish the transformation between the WPFEs and a normal random vector (RV) with the specific correlation. A reliability sensitivity model to the WPFEs expressed to the normal RV is then proposed. The numerical results validate the accuracy of the proposed multivariate NSTPNT and the sensitivity model. The maximum relative error for using the sensitivity to approximate the change of reliability with distribution parameters of the WPFEs is less than 2.42%. The necessity of considering the correlation of WPFEs is analyzed. The maximum relative error of the sensitivity reaches 83% when the correlation is ignored.

2013 ◽  
Vol 291-294 ◽  
pp. 407-414 ◽  
Author(s):  
Guo Peng Zhou ◽  
Fu Feng Miao ◽  
Xi Sheng Tang ◽  
Tao Wu ◽  
Shan Ying Li ◽  
...  

The output power of wind farms has significant randomness and variability, which results in adverse impacts on power system frequency stability. This paper extracts wind power fluctuation feature with the HHT (Hilbert-Huang Transform) method. Firstly, the original wind power data was decomposed into several IMFs (Intrinsic Mode Functions) and a tendency component by using the EMD (Empirical Mode Decomposition) method. Secondly, the instantaneous frequency of each IMF was calculated. On this basis, taking a WSCC 9-bus power system as benchmark, the impact on power system frequency caused by wind power fluctuation was simulated in a real-time simulation platform, and the key component which results in the frequency deviation was found. The simulation results validate the wind power fluctuation impacts on frequency deviation, underlying the following study on power system frequency stability under the situation of large-scale intermittent generation access into the grid.


2014 ◽  
Vol 644-650 ◽  
pp. 3840-3843
Author(s):  
San Ming Liu ◽  
Zhi Jie Wang ◽  
Xia Sun ◽  
Yi Teng Liang ◽  
Xiao Wei Zhu

The impacts of wind disturbance on voltage regulation and frequency regulation of power system were studied. The opinion that the regulation of power flow on the tie lines between the grids constrains the integrated capacity of wind power was put forward. Based on the real condition of Inner Mongolia power grid, an engineering practical method was put forward to calculate the integrated capacity of wind power under this constraint. The relationship between wind power and spinning reserve and the impacts of other related factors on the capacity of wind power were studied as well. The impact of wind disturbance on voltage stability where the wind farms are located was studied.


2013 ◽  
Vol 380-384 ◽  
pp. 2972-2976
Author(s):  
Xiang Yu Lv ◽  
Tian Dong ◽  
Ye Yuan ◽  
De Xin Li ◽  
Xiao Juan Han

Large scale wind power integration has influenced the safety of power system. Taking wind power integration in Jilin as example, the paper describes the influencing factors of large scale wind power integration on reactive power of the grid in detail firstly, then analyze the reactive voltage in four typical ways, and discuss the impact of the wind power fluctuations on the grid reactive voltage.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1880 ◽  
Author(s):  
Evangelos Spiliotis ◽  
Fotios Petropoulos ◽  
Konstantinos Nikolopoulos

Weather variables are an important driver of power generation from renewable energy sources. However, accurately predicting such variables is a challenging task, which has a significant impact on the accuracy of the power generation forecasts. In this study, we explore the impact of imperfect weather forecasts on two classes of forecasting methods (statistical and machine learning) for the case of wind power generation. We perform a stress test analysis to measure the robustness of different methods on the imperfect weather input, focusing on both the point forecasts and the 95% prediction intervals. The results indicate that different methods should be considered according to the uncertainty characterizing the weather forecasts.


2019 ◽  
Vol 11 (3) ◽  
pp. 033304 ◽  
Author(s):  
Mao Yang ◽  
Luobin Zhang ◽  
Yang Cui ◽  
Qiongqiong Yang ◽  
Binyang Huang

2019 ◽  
Vol 302 ◽  
pp. 01002
Author(s):  
Sylwester Borowski

The paper presents issues related to the impact of wind farms on the environment. Emphasis was placed on vibrations that are transferred to the ground through the foundations. As research has shown - a case study - vibrations are felt up to about 1000 m from wind farms. According to other literature sources, this may affect living organisms in the ground.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6532
Author(s):  
Vahab Rostampour ◽  
Thom S. Badings ◽  
Jacquelien M. A. Scherpen

We present a Buildings-to-Grid (BtG) integration framework with intermittent wind-power generation and demand flexibility management provided by buildings. First, we extend the existing BtG models by introducing uncertain wind-power generation and reformulating the interactions between the Transmission System Operator (TSO), Distribution System Operators (DSO), and buildings. We then develop a unified BtG control framework to deal with forecast errors in the wind power, by considering ancillary services from both reserves and demand-side flexibility. The resulting framework is formulated as a finite-horizon stochastic model predictive control (MPC) problem, which is generally hard to solve due to the unknown distribution of the wind-power generation. To overcome this limitation, we present a tractable robust reformulation, together with probabilistic feasibility guarantees. We demonstrate that the proposed demand flexibility management can substitute the traditional reserve scheduling services in power systems with high levels of uncertain generation. Moreover, we show that this change does not jeopardize the stability of the grid or violate thermal comfort constraints of buildings. We finally provide a large-scale Monte Carlo simulation study to confirm the impact of achievements.


2013 ◽  
Vol 772 ◽  
pp. 619-621
Author(s):  
Zi Wei Bai

Advantages of wind power are self-evident, but the impact of wind power project on the local ecological environment and natural landscape is also increasingly subject to public attention. It mainly reflects in the visual pollution of the wind turbine (or natural landscape problems), noise, bird safety and electromagnetic interference. The paper analyzed the impact of wind farms on the environment, and recommended appropriate preventions and control measures to reduce it to an acceptable level.


Sign in / Sign up

Export Citation Format

Share Document