scholarly journals Local Trichoderma strains as a control strategy of complex black root rot disease of strawberry in Egypt

2019 ◽  
Vol 43 (1) ◽  
Author(s):  
Farid Abd-El-Kareem ◽  
Ibrahim E. Elshahawy ◽  
Mahfouz M. M. Abd-Elgawad

Abstract Background Economics and human safety to avoid health risks caused by fungicides are materializing new era of biological pest control. Trichoderma species ranked high among other agents to control complex black root rot disease of strawberry caused by Fusarium solani, Rhizoctonia solani, and Pythium sp. Our study aimed to document the efficacy of local strains representing T. harzianum, T. viride, T. virinis, and T. koningii against such a disease. Materials/methods These strains were cultured separately on potato dextrose broth medium to test their inhibitory effect against strawberry black root rot in vitro and in vivo. Strawberry growth and yield were also assessed relative to the untreated check and the fungicide Actamyl. Activity of peroxidase and chitinase were measured in plant leaves using spectrophotometer. Results Each of the antagonistic fungal strains significantly reduced growth area of all pathogenic fungi collectively causing the disease. Trichoderma harzianum, T. viride, and T. koningii reduced the growth area more than 90.6% for all tested pathogenic fungi. Each species significantly reduced disease incidence and severity under field conditions. The highest reduction in the disease incidence and severity, 83.3 and 88.5% respectively, was attained by mixture of the four species. This mixture increased the strawberry fresh and dry weight by 83.3 and 176.9%, respectively, and the yield by 117.1%. All Trichoderma species tested significantly increased the activity of two plant defense-related enzymes of strawberry plants against the pathogens. Their mixture attained the highest increase of peroxidase and chitinase activity by 150 and 160.9%, respectively. Conclusions While the fungal mixture could considerably increase the strawberry fresh and dry weight as well as the yield, it suppressed the incidence and severity of the disease. So, integrated pest management in ways that make these biocontrol agents complementary or superior to chemical fungicides should further be examined against this disease.

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Farid Abd-El-Kareem ◽  
Ibrahim E. Elshahawy ◽  
Mahfouz M. M. Abd-Elgawad

Abstract Background Black root rot of strawberry plants caused by Rhizoctonia solani, Fusarium solani, and Pythium sp. is a serious disease in Egypt. Biocontrol agents have frequently proved to possess paramount and safe tools against many diseases. The impact of soil treatments with 3 Bacillus pumilus isolates on black root rot disease of strawberry plants caused by R. solani, F., and Pythium sp. under laboratory and field conditions was examined herein on the commonly used ‘Festival’ strawberry cultivar. To increase the bacterial adhesion and distribution on the roots, each seedling was dipped in bacterial cell suspension at 1 × 108 colony-forming units/ml of each separate bacterial isolate for 30 min then mixed with 5% Arabic gum. Results The tested B. pumilus isolates significantly reduced the growth area of these 3 fungi. The two bacterial isolates Nos. 2 and 3 reduced the growth area by more than 85.2, 83.6, and 89.0% for R. solani, F. solani, and Pythium sp., respectively. Likewise, the 3 bacterial isolates significantly (P ≤ 0.05) inhibited the disease under field conditions. Isolates Nos. 2 and 3 suppressed the disease incidence by 64.4 and 68.9% and disease severity by 65.3 and 67.3%, respectively. The fungicide Actamyl had effect similar to that of the 2 isolates. B. pumilus isolates significantly enhanced growth parameters and yields of strawberry plants; isolates Nos. 2 and 3 raised the yield by 66.7 and 73.3%, respectively. Conclusions Bacillus pumilus isolates could effectively manage the black rot disease in strawberry herein. Due to the significant impact of the root rot disease on strawberry yield, B. pumilus should be further tested to manage the disease on strawberry on large scale in Egypt.


2020 ◽  
Vol 8 (4) ◽  
pp. 496
Author(s):  
Dilfuza Egamberdieva ◽  
Vyacheslav Shurigin ◽  
Burak Alaylar ◽  
Hua Ma ◽  
Marina E. H. Müller ◽  
...  

The effects of biochar on plant growth vary depending on the applied biochar type, study site environmental conditions, microbial species, and plant–microbial interactions. The objectives of the present study were therefore to assess 1) the response of growth parameters of lupin and root disease incidence to the application of three biochar types in a loamy sandy soil, and 2) the role of endophytic bacteria in biological control of root rot disease incidence in lupin after the amendment of soil with different biochar types. As biochar types we tested (i) hydrochar (HTC) from maize silage, (ii) pyrolysis char from maize (MBC), and (iii) pyrolysis char from wood (WBC) at three different concentrations (1%, 2%, and 3% of char as soil amendments). There were no significant effects in lupin shoot and root growth in soils amended with WBC at any of the concentrations. MBC did not affect plant growth except for root dry weight at 2% MBC. HTC char at 2% concentration, significantly increased the root dry weight of lupin by 54–75%, and shoot dry weight by 21–25%. Lupin plants grown in soil amended with 2% and 3% WBC and MBC chars showed 40–50% and 10–20% disease symptoms, respectively. Plants grown in soil without biochar and with HTC char were healthy, and no disease incidence occurred. Pseudomonas putida L2 and Stenotrophomonas pavanii L8 isolates demonstrated a disease reduction compared to un-inoculated plants under MBC and WBC amended soil that was infested with Fusarium solani.


Author(s):  
Mahfouz M. M. Abd-Elgawad ◽  
Ibrahim E. Elshahawy ◽  
Farid Abd-El-Kareem

Abstract Background Strawberry (Fragaria ananassa Duch.) is an economically important crop in Egypt. Yet complex black root rot disease of strawberry caused by Fusarium solani, Rhizoctonia solani, and Pythium sp. can cause considerable yield losses. Therefore, this study aimed at evaluating different aspects of soil solarization against this disease. Such an evaluation would better be viewed in the context of other beneficial effects of soil solarization on nematodes and weeds. Materials/methods Growth agar disks, growth suspension, and resting stages of strawberry black root rot fungi were evaluated at different temperatures and exposure times using digital hot water bath. Cloth bags artificially infested with single fungal species were buried into the soil before soil solarization at soil depths of 1–10, 11–20, and 21–30 cm at three spots of each plot for each of the abovementioned fungi for 3, 6, or 9 weeks. The disease incidence and severity in solarized and un-solarized soil was compared with the application of the fungicide Actamyl. Effects of soil solarization on nematodes and weeds were also consulted. Results The lethal temperature to F. solani, Pythium sp., and R. solani was 58, 58, and 56 °C, respectively when exposure time was 1 min. Chlamydospores were killed at 62 °C while sclerotia were killed at 58 °C in hot water for 1 min. Maximum soil temperature in solarized soil was raised by 15, 14, and 12 °C at depths of 1–10, 11–20, and 21–30 cm as compared with non-solarized soil. Solarization for 3, 6, and 9 weeks significantly reduced the disease incidence and severity and increased the strawberry yield. Complete reduction in total count of all tested fungi was obtained after 9 weeks at all tested depths. A review of collective soil pest and pathogen control via solarization documented its beneficial application. Conclusion The study may exploit hot months in Egypt for soil solarization against the serious root rot disease either singly or in an integrated pest management program.


2019 ◽  
Vol 32 ◽  
pp. 320-336
Author(s):  
Yehya A. Salih ◽  
Noor M. Mansoor

This study aimed to investigate the effect of interaction between Trichoderma harzianum and the fungicide Topsin-M on root rot disease that infected okra in the field. Three fungi were isolated from the root of okra that infected with root rot disease: Fusarium solani, Rhizoctonia solani and Macrophomina phaseolina. The pathogenicity of these fungi was tested and found to be they cause root rot disease on okra, the disease severity was 41.7, 6.7 and 31.7% respectively. The laboratorial experiments showed that T. harzianum had a high antagonism ability with degrees of 1 and 2 against the pathogenic fungi M. phaseolina, F. solani and R. solani respectively. Also, it was found that the fungicide Topsin –M inhibited the growth of all pathogenic fungi with a percent of 100%, while it inhibited the bioagent fungus growth with a percent of 50.4 %, therefore it be recommended for the interaction experiments. The field results showed that using of bioagent T. harzianum and fungicide topsin-M significantly reduced the infection percentage and severity disease of the pathogenic fungi F. solani, R. solani and M. phaseolina to 65.3, 21.20, 13.20, 46.20, 25.70 and 18.20% respectively, compared to each pathogenic fungus alone which were 71.00, 60.20, 60.20, 66.80, 80.20 and 60.20% respectively. The interaction between the bioagent T. harzianum and topsin-M led to increase the plant height, fresh and dry weight of shoot and root systems and the fruit productivity of the examined okra plants .


2017 ◽  
Vol 14 (1) ◽  
pp. 22-31
Author(s):  
Baghdad Science Journal

This study was conducted to determine the fungal cause and bio control of damping off and root rot of wheat plants by using pseudomonas fluorescens under greenhouse and field conditions. Results showed isolation of eight species from the soil and roots to deferent region of Baghdad government. Rhizoctonia solani (Rs) and Fusarium solani (Fs) were the predominant damping off fungus with frequency 60 and 52% respectively. Led the using of bacteria formulations such as crud suspension , pure bacteria filtration and pure living cells in culture medium inhibit all type fungi with rates ranging from 84-96% , 80- 93% and 75-88% respectively. Rs and Fs were more pathogenesis under greenhouse conditions, with incidence of 80 and 68% and disease severity up to 41,20 and 30,20% respectively. The results of test bacterial formulation (dry, liquid and bacterial filtrate ) with seeds, soil and water irrigation showed high effectiveness for all treatments with superiority of the treatment of seeds in reducing the incidence which reached for the three formulation 21-34% compared with the infested control of Fs, Rs which reached 70 and 55%, respectively. Field experiments results showed superiority of seeds bacterization with dry formulation to reduce the disease incidence to 38% compared with the infested control (75%).These results reflected on the increasing of the shoot and rot dry weight and increasing the productivity (63%) compared with the infested control treatment .


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alemayehu Dugassa ◽  
Tesfaye Alemu ◽  
Yitbarek Woldehawariat

Abstract Background Faba bean (Vicia faba L.) cultivation is highly challenged by faba bean black root rot disease (Fusarium solani) in high lands of Ethiopia. To ensure sustainable production of faba beans, searching for eco-friendly disease management options is necessary to curb the progress of the disease timely. The indigenous biocontrol agents that suit local environments may effectively strive with in-situ microorganisms and suppress local pathogen strains. This study aimed to screen antagonistic indigenous compatible Trichoderma and Pseudomonas strains against Fusarium solani. In the pathogenicity test, soil-filled pots were arranged in complete random block design and sown with health faba bean seeds. The effect of some fungicides was evaluated against Fusarium by food poisoning methods to compare with the biocontrol agents. The antagonistic efficacy of biocontrol agents and their compatibility was investigated on Potato dextrose agar medium. Results Fusarium solani AAUF51 strain caused an intense root rotting in faba bean plant. The effect of Mancozeb 80% WP at 300 ppm was comparable with Trichoderma and Pseudomonas strains against Fusarium. The mycelial growth of test the pathogen was significantly (P ≤ 0.05) reduced to 86.67 and 85.19% by Trichoderma harzianum AAUW1 and Trichoderma viridae AAUC22 strains in dual culture, respectively. The volatile metabolites of Pseudomonas aeruginosa AAUS31 (77.78%) found the most efficient in reducing mycelial growth of Fusarium followed by Pseudomonas fluorescens AAUPF62 (71.11%) strains. The cell-free culture filtrates of Pseudomonas fluorescens AAUPF62 and Pseudomonas aeruginosa AAUS31 were more efficient than the Trichoderma strain in reducing the growth of Fusarium isolates. There was no zone of inhibition recorded between Trichoderma harzianum AAUW1, Trichoderma viridae AAUC22, Pseudomonas aeruginosa AAUS31, and Pseudomonas fluorescens AAUPF62 strains, hence they were mutually compatible. Conclusions The compatible Trichoderma and Pseudomonas strains showed antagonistic potentiality that could be explored for faba bean protection against black root rot disease and might have a future dual application as biocontrol agents.


Plant Disease ◽  
2008 ◽  
Vol 92 (9) ◽  
pp. 1368-1368 ◽  
Author(s):  
S. T. Koike

In 2005 and 2006, field-grown iceberg lettuce (Lactuca sativa) in California's coastal Salinas Valley (Monterey County) was affected by a previously unreported disease. Symptoms were observed on iceberg lettuce at the post-thin rosette stage (8 to 12 leaves). Plants were stunted and slightly chlorotic. Fine feeder roots had numerous, small (4 to 8 mm long), elongated, dark brown-to-black lesions. Larger secondary roots and taproots lacked lesions. No vascular discoloration was present. Isolations from root lesions consistently resulted in gray fungal colonies that formed catenulate, cylindrical, thin-walled, hyaline endoconidia and catenulate, subrectangular, thick-walled, dark aleuriospores. The fungus was identified as Thielaviopsis basicola (2). Conidial suspensions (5.0 × 105) of eight isolates from iceberg lettuce were used for pathogenicity tests. Iceberg cv. Ponderosa and romaine cv. Winchester were grown for 3 weeks in soilless peat moss rooting mix. Roots of 20 plants per cultivar were washed free of the rooting mix and soaked in conidial suspensions for 5 min. Plants were repotted and grown in a greenhouse. Control plant roots were soaked in sterile distilled water (SDW). After 3 weeks, inoculated iceberg exhibited slight chlorosis in comparison with control plants. Feeder roots of all iceberg plants inoculated with the eight isolates exhibited numerous black lesions and T. basicola was reisolated from these roots. Romaine lettuce, however, did not show any foliar symptoms. Small segments of roots had tan-to-light brown discoloration and T. basicola was occasionally reisolated (approximately 40% recovery). Roots of control iceberg and romaine showed no symptoms. Results were similar when this experiment was repeated. To explore the host range of T. basicola recovered from lettuce, two isolates were prepared and inoculated as described above onto 12 plants each of the following: iceberg lettuce (cv. Ponderosa), bean (cv. Blue Lake), broccoli (cv. Patriot), carrot (cv. Long Imperator #58), celery (cv. Conquistador), cotton (cv. Phy-72 Acala), cucumber (cv. Marketmore 76), green bunching onion (cv. Evergreen Bunching), parsley (cv. Moss Curled), pepper (cv. California Wonder 300 TMR), radish (cv. Champion), spinach (cvs. Bolero and Bossanova), and tomato (cv. Beefsteak). Control plant roots of all cultivars were soaked in SDW. After 4 weeks, only lettuce and bean roots had extensive brown-to-black lesions, from which the pathogen was consistently resiolated. Roots of cotton, pepper, spinach, and tomato had sections of light brown-to-orange discoloration; the pathogen was not consistently recovered from these sections. All other species and the control plants were symptomless. This experiment was repeated with similar results except that inoculated peppers were distinctly stunted compared with control plants. To my knowledge, this is the first report of black root rot caused by T. basicola on lettuce in California. Disease was limited to patches along edges of iceberg lettuce fields; disease incidence in these discrete patches reached as high as 35%. Affected plants continued to grow but remained stunted in relation to unaffected plants and were not harvested. Black root rot of lettuce has been reported in Australia (1); that report also showed that lettuce cultivars vary in susceptibility to T. basicola and isolates from lettuce were highly aggressive on bean but not on many other reported hosts of this pathogen. References: (1) R. G. O'Brien and R. D. Davis. Australas. Plant Pathol. 23:106, 1994. (2) C. V. Subramanian. No. 170 in: Descriptions of Pathogenic Fungi and Bacteria. CMI, Kew, Surrey, UK, 1968.


2003 ◽  
Vol 83 (4) ◽  
pp. 939-942 ◽  
Author(s):  
H. M. Haji ◽  
R. A. Brammall ◽  
D. L. VanHooren

The effects of Nicotiana debneyi-derived resistance to black root rot disease were evaluated for yield, agronomic and quality traits by comparing the near isogenic cultivars AC Gayed (resistant) and Delgold (susceptible). Over 7 yr of trials the possession of resistance led to yields and economic returns that averaged 6 and 7% lower, respectively, than for the susceptible line. Key words: Flue-cured tobacco, Nicotiana tabaccum, Black Root Rot, Chalara elegans, Nicotiana debneyi, yield, quality


Sign in / Sign up

Export Citation Format

Share Document