scholarly journals A lightweight cryptographic algorithm for the transmission of images from road environments in self-driving

Cybersecurity ◽  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Runchen Gao ◽  
Shen Li ◽  
Yuqi Gao ◽  
Rui Guo

AbstractWith the large-scale application of 5G in industrial production, the Internet of Things has become an important technology for various industries to achieve efficiency improvement and digital transformation with the help of the mobile edge computing. In the modern industry, the user often stores data collected by IoT devices in the cloud, but the data at the edge of the network involves a large of the sensitive information, which increases the risk of privacy leakage. In order to address these two challenges, we propose a security strategy in the edge computing. Our security strategy combines the Feistel architecture and short comparable encryption based on sliding window (SCESW). Compared to existing security strategies, our proposed security strategy guarantees its security while significantly reducing the computational overhead. And our GRC algorithm can be successfully deployed on a hardware platform.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xixi Yan ◽  
Guanghui He ◽  
Jinxia Yu ◽  
Yongli Tang ◽  
Mingjie Zhao

In the Internet of Things (IoT) environment, the intelligent devices collect and share large-scale sensitive personal data for a wide range of application. However, the power of storage and computing of IoT devices is limited, so the mass perceived data will be encrypted and transmitted to a cloud platform-interconnected IoT devices. Therefore, the concern how to save the encryption/decryption cost and preserve the privacy of the sensitive data in IoT environment is an issue that deserves research. To mitigate these issues, an offline/online attribute-based encryption scheme that supports partial policy hidden and outsourcing decryption will be proposed. This scheme adopts offline/online attribute-based encryption algorithms; then, the key generation algorithm and encryption algorithm are divided into two stages: offline stage and online stage. Meanwhile, in order to solve the problem of policy disclosure under the cloud platform, the policy hidden is supported, that is, the attribute is divided into the attribute value and the attribute name. For the pairing operation involved in decryption process, a verifiable outsourced decryption is implemented. Our scheme is constructed based on composite bilinear groups, which meets full security under the standard model. Finally, by comparing with other schemes in terms of functionality and computational overhead, it is shown that the proposed scheme is more efficient and applicable to the mobile devices with limited computing and storage functions in the Internet of Things environment.



IoT ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 140-162
Author(s):  
Hung Nguyen-An ◽  
Thomas Silverston ◽  
Taku Yamazaki ◽  
Takumi Miyoshi

We now use the Internet of things (IoT) in our everyday lives. The novel IoT devices collect cyber–physical data and provide information on the environment. Hence, IoT traffic will count for a major part of Internet traffic; however, its impact on the network is still widely unknown. IoT devices are prone to cyberattacks because of constrained resources or misconfigurations. It is essential to characterize IoT traffic and identify each device to monitor the IoT network and discriminate among legitimate and anomalous IoT traffic. In this study, we deployed a smart-home testbed comprising several IoT devices to study IoT traffic. We performed extensive measurement experiments using a novel IoT traffic generator tool called IoTTGen. This tool can generate traffic from multiple devices, emulating large-scale scenarios with different devices under different network conditions. We analyzed the IoT traffic properties by computing the entropy value of traffic parameters and visually observing the traffic on behavior shape graphs. We propose a new method for identifying traffic entropy-based devices, computing the entropy values of traffic features. The method relies on machine learning to classify the traffic. The proposed method succeeded in identifying devices with a performance accuracy up to 94% and is robust with unpredictable network behavior with traffic anomalies spreading in the network.



Author(s):  
Fei Meng ◽  
Leixiao Cheng ◽  
Mingqiang Wang

AbstractCountless data generated in Smart city may contain private and sensitive information and should be protected from unauthorized users. The data can be encrypted by Attribute-based encryption (CP-ABE), which allows encrypter to specify access policies in the ciphertext. But, traditional CP-ABE schemes are limited because of two shortages: the access policy is public i.e., privacy exposed; the decryption time is linear with the complexity of policy, i.e., huge computational overheads. In this work, we introduce a novel method to protect the privacy of CP-ABE scheme by keyword search (KS) techniques. In detail, we define a new security model called chosen sensitive policy security: two access policies embedded in the ciphertext, one is public and the other is sensitive and hidden. If user's attributes don't satisfy the public policy, he/she cannot get any information (attribute name and its values) of the hidden one. Previous CP-ABE schemes with hidden policy only work on the “AND-gate” access structure or their ciphertext size or decryption time maybe super-polynomial. Our scheme is more expressive and compact. Since, IoT devices spread all over the smart city, so the computational overhead of encryption and decryption can be shifted to third parties. Therefore, our scheme is more applicable to resource-constrained users. We prove our scheme to be selective secure under the decisional bilinear Diffie-Hellman (DBDH) assumption.



2020 ◽  
Vol 2 (1) ◽  
pp. 92
Author(s):  
Rahim Rahmani ◽  
Ramin Firouzi ◽  
Sachiko Lim ◽  
Mahbub Alam

The major challenges of operating data-intensive of Distributed Ledger Technology (DLT) are (1) to reach consensus on the main chain as a set of validators cast public votes to decide on which blocks to finalize and (2) scalability on how to increase the number of chains which will be running in parallel. In this paper, we introduce a new proximal algorithm that scales DLT in a large-scale Internet of Things (IoT) devices network. We discuss how the algorithm benefits the integrating DLT in IoT by using edge computing technology, taking the scalability and heterogeneous capability of IoT devices into consideration. IoT devices are clustered dynamically into groups based on proximity context information. A cluster head is used to bridge the IoT devices with the DLT network where a smart contract is deployed. In this way, the security of the IoT is improved and the scalability and latency are solved. We elaborate on our mechanism and discuss issues that should be considered and implemented when using the proposed algorithm, we even show how it behaves with varying parameters like latency or when clustering.



2019 ◽  
Vol 11 (4) ◽  
pp. 100 ◽  
Author(s):  
Maurizio Capra ◽  
Riccardo Peloso ◽  
Guido Masera ◽  
Massimo Ruo Roch ◽  
Maurizio Martina

In today’s world, ruled by a great amount of data and mobile devices, cloud-based systems are spreading all over. Such phenomenon increases the number of connected devices, broadcast bandwidth, and information exchange. These fine-grained interconnected systems, which enable the Internet connectivity for an extremely large number of facilities (far beyond the current number of devices) go by the name of Internet of Things (IoT). In this scenario, mobile devices have an operating time which is proportional to the battery capacity, the number of operations performed per cycle and the amount of exchanged data. Since the transmission of data to a central cloud represents a very energy-hungry operation, new computational paradigms have been implemented. The computation is not completely performed in the cloud, distributing the power load among the nodes of the system, and data are compressed to reduce the transmitted power requirements. In the edge-computing paradigm, part of the computational power is moved toward data collection sources, and, only after a first elaboration, collected data are sent to the central cloud server. Indeed, the “edge” term refers to the extremities of systems represented by IoT devices. This survey paper presents the hardware architectures of typical IoT devices and sums up many of the low power techniques which make them appealing for a large scale of applications. An overview of the newest research topics is discussed, besides a final example of a complete functioning system, embedding all the introduced features.



Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4375 ◽  
Author(s):  
Yuxuan Wang ◽  
Jun Yang ◽  
Xiye Guo ◽  
Zhi Qu

As one of the information industry’s future development directions, the Internet of Things (IoT) has been widely used. In order to reduce the pressure on the network caused by the long distance between the processing platform and the terminal, edge computing provides a new paradigm for IoT applications. In many scenarios, the IoT devices are distributed in remote areas or extreme terrain and cannot be accessed directly through the terrestrial network, and data transmission can only be achieved via satellite. However, traditional satellites are highly customized, and on-board resources are designed for specific applications rather than universal computing. Therefore, we propose to transform the traditional satellite into a space edge computing node. It can dynamically load software in orbit, flexibly share on-board resources, and provide services coordinated with the cloud. The corresponding hardware structure and software architecture of the satellite is presented. Through the modeling analysis and simulation experiments of the application scenarios, the results show that the space edge computing system takes less time and consumes less energy than the traditional satellite constellation. The quality of service is mainly related to the number of satellites, satellite performance, and task offloading strategy.



2021 ◽  
Vol 12 (1) ◽  
pp. 140
Author(s):  
Seunghwan Lee ◽  
Linh-An Phan ◽  
Dae-Heon Park ◽  
Sehan Kim ◽  
Taehong Kim

With the exponential growth of the Internet of Things (IoT), edge computing is in the limelight for its ability to quickly and efficiently process numerous data generated by IoT devices. EdgeX Foundry is a representative open-source-based IoT gateway platform, providing various IoT protocol services and interoperability between them. However, due to the absence of container orchestration technology, such as automated deployment and dynamic resource management for application services, EdgeX Foundry has fundamental limitations of a potential edge computing platform. In this paper, we propose EdgeX over Kubernetes, which enables remote service deployment and autoscaling to application services by running EdgeX Foundry over Kubernetes, which is a product-grade container orchestration tool. Experimental evaluation results prove that the proposed platform increases manageability through the remote deployment of application services and improves the throughput of the system and service quality with real-time monitoring and autoscaling.



Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 44
Author(s):  
Leiting Tao ◽  
Xiaofeng Wang ◽  
Yuan Liu ◽  
Jie Wu

Cyber-physical systems (CPSs) based on space-ground integrated networks (SGINs) enable CPSs to break through geographical restrictions in space. Therefore, providing a test platform is necessary for new technical verification and network security strategy evaluations of SGINs. User behavior emulation technology can effectively support the construction of a test platform. Given the inherent dynamic changes, diverse behaviors, and large-scale characteristics of SGIN users, we propose user behavior emulation technology based on a cloud platform. First, the dynamic emulation architecture for user behavior for SGINs is designed. Then, normal user behavior emulation strategy driven by the group user behavior model in real time is proposed, which can improve the fidelity of emulation. Moreover, rogue user behavior emulation technology is adopted, based on traffic replay, to perform the security evaluation. Specifically, virtual Internet Protocol (IP) technology and the epoll model are effectively integrated in this investigation to resolve the contradiction between large-scale emulation and computational overhead. The experimental results demonstrate that the strategy meets the requirement of a diverse and high-fidelity dynamic user behavior emulation and reaches the emulation scale of 100,000-level concurrent communication for normal users and 100,000-level concurrent attacks for rogue users.



Author(s):  
Khattab M. Ali Alheeti ◽  
Ibrahim Alsukayti ◽  
Mohammed Alreshoodi

<p class="0abstract">Innovative applications are employed to enhance human-style life. The Internet of Things (IoT) is recently utilized in designing these environments. Therefore, security and privacy are considered essential parts to deploy and successful intelligent environments. In addition, most of the protection systems of IoT are vulnerable to various types of attacks. Hence, intrusion detection systems (IDS) have become crucial requirements for any modern design. In this paper, a new detection system is proposed to secure sensitive information of IoT devices. However, it is heavily based on deep learning networks. The protection system can provide a secure environment for IoT. To prove the efficiency of the proposed approach, the system was tested by using two datasets; normal and fuzzification datasets. The accuracy rate in the case of the normal testing dataset was 99.30%, while was 99.42% for the fuzzification testing dataset. The experimental results of the proposed system reflect its robustness, reliability, and efficiency.</p>



2021 ◽  
Vol 9 (1) ◽  
pp. 324-329
Author(s):  
Santosh P. Jadhav, Prof. Georgi Balabanov, Prof. Vladmir poulkov.

The Internet of things has become part of our day to day life as many more devices are connecting to the internet, the number is increasing rapidly. IoT devices have become the element in our day to day life. Such as many tiny devices are continuously monitoring our health homes and providing sensitive information which can be analyzed and help for decision making. This important data must have enough security. Hence, the security and efficiency of these IoT devices play an important role therefore various efforts are made to make these resource constraint devices highly secure and efficient. Signcryption is one of the techniques to increase efficiency as compare to traditional signature then encryption schemes. Signcryption along with the hyper-elliptic curve (HECC) can reduce the computational cost of the encryption schemes along with the provision of higher security.  



Sign in / Sign up

Export Citation Format

Share Document