scholarly journals Edge Computing: A Survey On the Hardware Requirements in the Internet of Things World

2019 ◽  
Vol 11 (4) ◽  
pp. 100 ◽  
Author(s):  
Maurizio Capra ◽  
Riccardo Peloso ◽  
Guido Masera ◽  
Massimo Ruo Roch ◽  
Maurizio Martina

In today’s world, ruled by a great amount of data and mobile devices, cloud-based systems are spreading all over. Such phenomenon increases the number of connected devices, broadcast bandwidth, and information exchange. These fine-grained interconnected systems, which enable the Internet connectivity for an extremely large number of facilities (far beyond the current number of devices) go by the name of Internet of Things (IoT). In this scenario, mobile devices have an operating time which is proportional to the battery capacity, the number of operations performed per cycle and the amount of exchanged data. Since the transmission of data to a central cloud represents a very energy-hungry operation, new computational paradigms have been implemented. The computation is not completely performed in the cloud, distributing the power load among the nodes of the system, and data are compressed to reduce the transmitted power requirements. In the edge-computing paradigm, part of the computational power is moved toward data collection sources, and, only after a first elaboration, collected data are sent to the central cloud server. Indeed, the “edge” term refers to the extremities of systems represented by IoT devices. This survey paper presents the hardware architectures of typical IoT devices and sums up many of the low power techniques which make them appealing for a large scale of applications. An overview of the newest research topics is discussed, besides a final example of a complete functioning system, embedding all the introduced features.

2018 ◽  
Vol 7 (3.12) ◽  
pp. 545
Author(s):  
Risabh Mishra ◽  
M Safa ◽  
Aditya Anand

Recent advances in wireless communication technologies and automobile industry have triggered a significant research interest in the field of Internet of Vehicles over the past few years.The advanced period of the Internet of Things is guiding the development of conventional Vehicular Networks to the Internet of Vehicles.In the days of Internet connectivity there is need to be in safe and problem-free environment.The Internet of Vehicles (IoV) is normally a mixing of three networks: an inter-vehicleNetwork, an intra-vehicle network, and a vehicle to vehicle network.Based on  idea of three networks combining into one, we define  Internet of Vehicles as a large-scale distributed system to wireless communication and information exchange between vehicle2X (X: vehicle, road, human and internet).It is a combined   network for supporting intelligent traffic management, intelligent dynamic information service, and intelligent vehicle control, representation of an application of the Internet of Things (IoT) technology for intelligent transportation system (ITS).  


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4375 ◽  
Author(s):  
Yuxuan Wang ◽  
Jun Yang ◽  
Xiye Guo ◽  
Zhi Qu

As one of the information industry’s future development directions, the Internet of Things (IoT) has been widely used. In order to reduce the pressure on the network caused by the long distance between the processing platform and the terminal, edge computing provides a new paradigm for IoT applications. In many scenarios, the IoT devices are distributed in remote areas or extreme terrain and cannot be accessed directly through the terrestrial network, and data transmission can only be achieved via satellite. However, traditional satellites are highly customized, and on-board resources are designed for specific applications rather than universal computing. Therefore, we propose to transform the traditional satellite into a space edge computing node. It can dynamically load software in orbit, flexibly share on-board resources, and provide services coordinated with the cloud. The corresponding hardware structure and software architecture of the satellite is presented. Through the modeling analysis and simulation experiments of the application scenarios, the results show that the space edge computing system takes less time and consumes less energy than the traditional satellite constellation. The quality of service is mainly related to the number of satellites, satellite performance, and task offloading strategy.


Author(s):  
Aleksandar Tošić ◽  
Jernej Vičič ◽  
Michael David Burnard ◽  
Michael Mrissa

The Internet of Things (IoT) is experiencing widespread adoption across industry sectors ranging from supply chain management to smart cities, buildings, and health monitoring. However, most software architectures for IoT deployment rely on centralized cloud computing infrastructures to provide storage and computing power, as cloud providers have high economic incentives to organize their infrastructure into clusters. Despite these incentives, there has been a recent shift from centralized to decentralized architecture that harnesses the potential of edge devices, reduces network latency, and lowers infrastructure cost to support IoT applications. This shift has resulted in new edge computing architectures, but many still rely on centralized solutions for managing applications. A truly decentralized approach would offer interesting properties required for IoT use cases. To address these concerns, we introduce a decentralized architecture tailored for large scale deployments of peer-to-peer IoT sensor networks and capable of run-time application migration. The solution combines a blockchain consensus algorithm and verifiable random functions to ensure scalability, fault tolerance, transparency, and no single point of failure. We build on our previously presented theoretical simulations with many protocol improvements and an implementation tested in a use case related to monitoring a Slovenian cultural heritage building located in Bled, Slovenia.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1730
Author(s):  
Seungnam Han ◽  
Yonggu Lee ◽  
Jinho Choi ◽  
Euiseok Hwang

In this paper, we propose a lightweight physical layer aided authentication and key agreement (PL-AKA) protocol in the Internet of Things (IoT). The conventional evolved packet system AKA (EPS-AKA) used in long-term evolution (LTE) systems may suffer from congestion in core networks by the large signaling overhead as the number of IoT devices increases. Thus, in order to alleviate the overhead, we consider cross-layer authentication by integrating physical layer approaches to cryptography-based schemes. To demonstrate the feasibility of the PL-AKA, universal software radio peripheral (USRP) based tests are conducted as well as numerical simulations. The proposed scheme shows a significant reduction in the signaling overhead, compared to the conventional EPS-AKA in both the simulation and experiment. Therefore, the proposed lightweight PL-AKA has the potential for practical and efficient implementation of large-scale IoT networks.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xixi Yan ◽  
Guanghui He ◽  
Jinxia Yu ◽  
Yongli Tang ◽  
Mingjie Zhao

In the Internet of Things (IoT) environment, the intelligent devices collect and share large-scale sensitive personal data for a wide range of application. However, the power of storage and computing of IoT devices is limited, so the mass perceived data will be encrypted and transmitted to a cloud platform-interconnected IoT devices. Therefore, the concern how to save the encryption/decryption cost and preserve the privacy of the sensitive data in IoT environment is an issue that deserves research. To mitigate these issues, an offline/online attribute-based encryption scheme that supports partial policy hidden and outsourcing decryption will be proposed. This scheme adopts offline/online attribute-based encryption algorithms; then, the key generation algorithm and encryption algorithm are divided into two stages: offline stage and online stage. Meanwhile, in order to solve the problem of policy disclosure under the cloud platform, the policy hidden is supported, that is, the attribute is divided into the attribute value and the attribute name. For the pairing operation involved in decryption process, a verifiable outsourced decryption is implemented. Our scheme is constructed based on composite bilinear groups, which meets full security under the standard model. Finally, by comparing with other schemes in terms of functionality and computational overhead, it is shown that the proposed scheme is more efficient and applicable to the mobile devices with limited computing and storage functions in the Internet of Things environment.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Bruno Cruz ◽  
Silvana Gómez-Meire ◽  
David Ruano-Ordás ◽  
Helge Janicke ◽  
Iryna Yevseyeva ◽  
...  

The Internet of Things (IoT) introduced the opportunity of remotely manipulating home appliances (such as heating systems, ovens, blinds, etc.) using computers and mobile devices. This idea fascinated people and originated a boom of IoT devices together with an increasing demand that was difficult to support. Many manufacturers quickly created hundreds of devices implementing functionalities but neglected some critical issues pertaining to device security. This oversight gave rise to the current situation where thousands of devices remain unpatched having many security issues that manufacturers cannot address after the devices have been produced and deployed. This article presents our novel research protecting IOT devices using Berkeley Packet Filters (BPFs) and evaluates our findings with the aid of our Filter.tlk tool, which is able to facilitate the development of BPF expressions that can be executed by GNU/Linux systems with a low impact on network packet throughput.


Author(s):  
Malti Bansal ◽  
Harshit

Edge computing is a new way of calculating where most computer and storage devices are located on the internet, near mobile devices, sensors, end users, and internet of things devices. This physical approach improves delays, bandwidth, trust and survival.


2017 ◽  
Author(s):  
JOSEPH YIU

The increasing need for security in microcontrollers Security has long been a significant challenge in microcontroller applications(MCUs). Traditionally, many microcontroller systems did not have strong security measures against remote attacks as most of them are not connected to the Internet, and many microcontrollers are deemed to be cheap and simple. With the growth of IoT (Internet of Things), security in low cost microcontrollers moved toward the spotlight and the security requirements of these IoT devices are now just as critical as high-end systems due to:


2018 ◽  
Vol 1 (2) ◽  
pp. 12
Author(s):  
Pedro Vitor de Sousa Guimarães ◽  
Sandro César Silveira Jucá ◽  
Renata Imaculada Soares Pereira ◽  
Ayrton Alexsander Monteiro Monteiro

This paper describes the use of a Linux embedded system for use in digital information and communication technology in order to generate image warnings using Internet of Things (IoT) prin- ciples. The proposed project generated a product, developed using concepts of project-based learning (ABP), called SECI (electronic internal communication system) that is accessed by students to view online warnings by distributed monitors and also by mobile devices connected to the Internet.


Sign in / Sign up

Export Citation Format

Share Document