scholarly journals Offline/Online Outsourced Attribute-Based Encryption with Partial Policy Hidden for the Internet of Things

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xixi Yan ◽  
Guanghui He ◽  
Jinxia Yu ◽  
Yongli Tang ◽  
Mingjie Zhao

In the Internet of Things (IoT) environment, the intelligent devices collect and share large-scale sensitive personal data for a wide range of application. However, the power of storage and computing of IoT devices is limited, so the mass perceived data will be encrypted and transmitted to a cloud platform-interconnected IoT devices. Therefore, the concern how to save the encryption/decryption cost and preserve the privacy of the sensitive data in IoT environment is an issue that deserves research. To mitigate these issues, an offline/online attribute-based encryption scheme that supports partial policy hidden and outsourcing decryption will be proposed. This scheme adopts offline/online attribute-based encryption algorithms; then, the key generation algorithm and encryption algorithm are divided into two stages: offline stage and online stage. Meanwhile, in order to solve the problem of policy disclosure under the cloud platform, the policy hidden is supported, that is, the attribute is divided into the attribute value and the attribute name. For the pairing operation involved in decryption process, a verifiable outsourced decryption is implemented. Our scheme is constructed based on composite bilinear groups, which meets full security under the standard model. Finally, by comparing with other schemes in terms of functionality and computational overhead, it is shown that the proposed scheme is more efficient and applicable to the mobile devices with limited computing and storage functions in the Internet of Things environment.

2018 ◽  
Author(s):  
Henry Tranter

Security is always at the forefront of developing technologies. One can seldom go a week without hearing of a new data breach or hacking attempt from various groups around the world, often taking advantage of a simple flaw in a system’s architecture. The Internet of Things (IoT) is one of these developing technologies which may be at risk of such attacks. IoT devices are becoming more and more prevalent in everyday life. From keeping track of an individual’s health, to suggesting meals from items available in an individual’s fridge, these technologies are taking a much larger role in the personal lives of their users. With this in mind, how is security being considered in the development of these technologies? Are these devices that monitor individual’s personal lives just additional vectors for potential data theft? Throughout this survey, various approaches to the development of security systems concerning IoT devices in the home will be discussed, compared, and contrasted in the hope of providing an ideal solution to the problems this technology may produce.


2018 ◽  
Author(s):  
Henry Tranter

Security is always at the forefront of developing technologies. One can seldom go a week without hearing of a new data breach or hacking attempt from various groups around the world, often taking advantage of a simple flaw in a system’s architecture. The Internet of Things (IoT) is one of these developing technologies which may be at risk of such attacks. IoT devices are becoming more and more prevalent in everyday life. From keeping track of an individual’s health, to suggesting meals from items available in an individual’s fridge, these technologies are taking a much larger role in the personal lives of their users. With this in mind, how is security being considered in the development of these technologies? Are these devices that monitor individual’s personal lives just additional vectors for potential data theft? Throughout this survey, various approaches to the development of security systems concerning IoT devices in the home will be discussed, compared, and contrasted in the hope of providing an ideal solution to the problems this technology may produce.


2019 ◽  
Vol 20 (2) ◽  
pp. 365-376 ◽  
Author(s):  
Vivek Kumar Prasad ◽  
Madhuri D Bhavsar ◽  
Sudeep Tanwar

The evolution of the Internet of Things (IoT) has augmented the necessity for Cloud, edge and fog platforms. The chief benefit of cloud-based schemes is they allow data to be collected from numerous services and sites, which is reachable from any place of the world. The organizations will be benefited by merging the cloud platform with the on-site fog networks and edge devices and as result, this will increase the utilization of the IoT devices and end users too. The network traffic will reduce as data will be distributed and this will also improve the operational efficiency. The impact of monitoring in edge and fog computing can play an important role to efficiently utilize the resources available at these layers. This paper discusses various techniques involved for monitoring for edge and fog computing and its advantages. The paper ends with a case study to demonstarte the need of monitoring in fog and edge in the healthcare system.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 634 ◽  
Author(s):  
Fawad Ali Khan ◽  
Rafidah Md Noor ◽  
Miss Laiha Mat Kiah ◽  
Noorzaily Mohd Noor ◽  
Saleh M. Altowaijri ◽  
...  

The Internet of Things has gained substantial attention over the last few years, because of connecting daily things in a wide range of application and domains. A large number of sensors require bandwidth and network resources to give-and-take queries among a heterogeneous IoT network. Network flooding is a key questioning strategy for successful exchange of queries. However, the risk of the original flooding is prone to unwanted and redundant network queries which may lead to heavy network traffic. Redundant, unwanted, and flooded queries are major causes of inefficient utilization of resources. IoT devices consume more energy and high computational time. More queries leads to consumption of more bandwidth, cost, and miserable QoS. Current existing approaches focused primarily on how to speed up the basic routing for IoT devices. However, solutions for flooding are not being addressed. In this paper, we propose a cluster-based flooding (CBF) as an interoperable solution for network and sensor layer devices which is also capable minimizing the energy consumption, cost, network flooding, identifying, and eliminating of redundant flooding queries using query control mechanisms. The proposed CBF divides the network into different clusters, local queries for information are proactively maintained by the intralayer cluster (IALC), while the interlayer cluster (IELC) is responsible for reactively obtain the routing queries to the destinations outside the cluster. CBF is a hybrid approach, having the potential to be more efficient against traditional schemes in term of query traffic generation. However, in the absence of appropriate redundant query detection and termination techniques, the CBF may generate more control traffic compared to the standard flooding techniques. In this research work, we used Cooja simulator to evaluate the performance of the proposed CBF. According to the simulation results the proposed technique has superiority in term of traffic delay, QoS/throughput, and energy consumption, under various performance metrics compared with traditional flooding and state of the art.


Author(s):  
Henry Tranter

Security is always at the forefront of developing technologies. One can seldom go a week without hearing of a new data breach or hacking attempt from various groups around the world, often taking advantage of a simple flaw in a system’s architecture. The Internet of Things (IoT) is one of these developing technologies which may be at risk of such attacks. IoT devices are becoming more and more prevalent in everyday life. From keeping track of an individual’s health, to suggesting meals from items available in an individual’s fridge, these technologies are taking a much larger role in the personal lives of their users. With this in mind, how is security being considered in the development of these technologies? Are these devices that monitor individual’s personal lives just additional vectors for potential data theft? Throughout this survey, various approaches to the development of security systems concerning IoT devices in the home will be discussed, compared, and contrasted in the hope of providing an ideal solution to the problems this technology may produce.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1730
Author(s):  
Seungnam Han ◽  
Yonggu Lee ◽  
Jinho Choi ◽  
Euiseok Hwang

In this paper, we propose a lightweight physical layer aided authentication and key agreement (PL-AKA) protocol in the Internet of Things (IoT). The conventional evolved packet system AKA (EPS-AKA) used in long-term evolution (LTE) systems may suffer from congestion in core networks by the large signaling overhead as the number of IoT devices increases. Thus, in order to alleviate the overhead, we consider cross-layer authentication by integrating physical layer approaches to cryptography-based schemes. To demonstrate the feasibility of the PL-AKA, universal software radio peripheral (USRP) based tests are conducted as well as numerical simulations. The proposed scheme shows a significant reduction in the signaling overhead, compared to the conventional EPS-AKA in both the simulation and experiment. Therefore, the proposed lightweight PL-AKA has the potential for practical and efficient implementation of large-scale IoT networks.


2020 ◽  
pp. 1-12
Author(s):  
Zhang Caiqian ◽  
Zhang Xincheng

The existing stand-alone multimedia machines and online multimedia machines in the market have certain deficiencies, so they cannot meet the actual needs. Based on this, this research combines the actual needs to design and implement a multi-media system based on the Internet of Things and cloud service platform. Moreover, through in-depth research on the MQTT protocol, this study proposes a message encryption verification scheme for the MQTT protocol, which can solve the problem of low message security in the Internet of Things communication to a certain extent. In addition, through research on the fusion technology of the Internet of Things and artificial intelligence, this research designs scheme to provide a LightGBM intelligent prediction module interface, MQTT message middleware, device management system, intelligent prediction and push interface for the cloud platform. Finally, this research completes the design and implementation of the cloud platform and tests the function and performance of the built multimedia system database. The research results show that the multimedia database constructed in this paper has good performance.


2019 ◽  
Vol 62 (6) ◽  
pp. 32-34 ◽  
Author(s):  
Thomas Pasquier ◽  
David Eyers ◽  
Jean Bacon

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2417
Author(s):  
Andrzej Michalski ◽  
Zbigniew Watral

This article presents the problems of powering wireless sensor networks operating in the structures of the Internet of Things (IoT). This issue was discussed on the example of a universal end node in IoT technology containing RFID (Radio Frequency Identification) tags. The basic methods of signal transmission in these types of networks are discussed and their impact on the basic requirements such as range, transmission speed, low energy consumption, and the maximum number of devices that can simultaneously operate in the network. The issue of low power consumption of devices used in IoT solutions is one of the main research objects. The analysis of possible communication protocols has shown that there is a possibility of effective optimization in this area. The wide range of power sources available on the market, used in nodes of wireless sensor networks, was compared. The alternative possibilities of powering the network nodes from Energy Harvesting (EH) generators are presented.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 545
Author(s):  
Risabh Mishra ◽  
M Safa ◽  
Aditya Anand

Recent advances in wireless communication technologies and automobile industry have triggered a significant research interest in the field of Internet of Vehicles over the past few years.The advanced period of the Internet of Things is guiding the development of conventional Vehicular Networks to the Internet of Vehicles.In the days of Internet connectivity there is need to be in safe and problem-free environment.The Internet of Vehicles (IoV) is normally a mixing of three networks: an inter-vehicleNetwork, an intra-vehicle network, and a vehicle to vehicle network.Based on  idea of three networks combining into one, we define  Internet of Vehicles as a large-scale distributed system to wireless communication and information exchange between vehicle2X (X: vehicle, road, human and internet).It is a combined   network for supporting intelligent traffic management, intelligent dynamic information service, and intelligent vehicle control, representation of an application of the Internet of Things (IoT) technology for intelligent transportation system (ITS).  


Sign in / Sign up

Export Citation Format

Share Document