scholarly journals “Seeing” Data Like an Expert: An Eye-Tracking Study Using Graphical Data Representations

2019 ◽  
Vol 18 (3) ◽  
pp. ar32 ◽  
Author(s):  
Joseph A. Harsh ◽  
Molly Campillo ◽  
Caylin Murray ◽  
Christina Myers ◽  
John Nguyen ◽  
...  

Given the centrality of data visualizations in communicating scientific information, increased emphasis has been placed on the development of students’ graph literacy—the ability to generate and interpret data representations—to foster understanding of domain-specific knowledge and the successful navigation of everyday life. Despite prior literature that identifies student difficulties and methods to improve graphing competencies, there is little understanding as to how learners develop these skills. To gain a better resolution of the cognitive basis by which individuals “see” graphs, this study uses eye tracking (ET) to compare the strategies of non–science undergraduates ( n = 9), early ( n = 7) and advanced ( n = 8) biology undergraduates, graduate students ( n = 6), and science faculty ( n = 6) in making sense of data displays. Results highlight variation in how individuals direct their attention (i.e., fixations and visual search patterns) when completing graph-based tasks as a function of science expertise. As research on the transition from novice to expert is crucially important in understanding how we might design curricula that help novices move toward more expert-like performance, this study has implications for the advancement of new strategies to aid the teaching and learning of data analysis skills.

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6908
Author(s):  
Sebastian Brückner ◽  
Jan Schneider ◽  
Olga Zlatkin-Troitschanskaia ◽  
Hendrik Drachsler

Learning to solve graph tasks is one of the key prerequisites of acquiring domain-specific knowledge in most study domains. Analyses of graph understanding often use eye-tracking and focus on analyzing how much time students spend gazing at particular areas of a graph—Areas of Interest (AOIs). To gain a deeper insight into students’ task-solving process, we argue that the gaze shifts between students’ fixations on different AOIs (so-termed transitions) also need to be included in holistic analyses of graph understanding that consider the importance of transitions for the task-solving process. Thus, we introduced Epistemic Network Analysis (ENA) as a novel approach to analyze eye-tracking data of 23 university students who solved eight multiple-choice graph tasks in physics and economics. ENA is a method for quantifying, visualizing, and interpreting network data allowing a weighted analysis of the gaze patterns of both correct and incorrect graph task solvers considering the interrelations between fixations and transitions. After an analysis of the differences in the number of fixations and the number of single transitions between correct and incorrect solvers, we conducted an ENA for each task. We demonstrate that an isolated analysis of fixations and transitions provides only a limited insight into graph solving behavior. In contrast, ENA identifies differences between the gaze patterns of students who solved the graph tasks correctly and incorrectly across the multiple graph tasks. For instance, incorrect solvers shifted their gaze from the graph to the x-axis and from the question to the graph comparatively more often than correct solvers. The results indicate that incorrect solvers often have problems transferring textual information into graphical information and rely more on partly irrelevant parts of a graph. Finally, we discuss how the findings can be used to design experimental studies and for innovative instructional procedures in higher education.


2014 ◽  
Vol 10 (3) ◽  
pp. 249-261 ◽  
Author(s):  
Tessa Sanderson ◽  
Jo Angouri

The active involvement of patients in decision-making and the focus on patient expertise in managing chronic illness constitutes a priority in many healthcare systems including the NHS in the UK. With easier access to health information, patients are almost expected to be (or present self) as an ‘expert patient’ (Ziebland 2004). This paper draws on the meta-analysis of interview data collected for identifying treatment outcomes important to patients with rheumatoid arthritis (RA). Taking a discourse approach to identity, the discussion focuses on the resources used in the negotiation and co-construction of expert identities, including domain-specific knowledge, access to institutional resources, and ability to self-manage. The analysis shows that expertise is both projected (institutionally sanctioned) and claimed by the patient (self-defined). We close the paper by highlighting the limitations of our pilot study and suggest avenues for further research.


Author(s):  
Piercarlo Dondi ◽  
Marco Porta ◽  
Angelo Donvito ◽  
Giovanni Volpe

AbstractInteractive and immersive technologies can significantly enhance the fruition of museums and exhibits. Several studies have proved that multimedia installations can attract visitors, presenting cultural and scientific information in an appealing way. In this article, we present our workflow for achieving a gaze-based interaction with artwork imagery. We designed both a tool for creating interactive “gaze-aware” images and an eye tracking application conceived to interact with those images with the gaze. Users can display different pictures, perform pan and zoom operations, and search for regions of interest with associated multimedia content (text, image, audio, or video). Besides being an assistive technology for motor impaired people (like most gaze-based interaction applications), our solution can also be a valid alternative to the common touch screen panels present in museums, in accordance with the new safety guidelines imposed by the COVID-19 pandemic. Experiments carried out with a panel of volunteer testers have shown that the tool is usable, effective, and easy to learn.


2020 ◽  
Vol 20 (S10) ◽  
Author(s):  
Ankur Agrawal ◽  
Licong Cui

AbstractBiological and biomedical ontologies and terminologies are used to organize and store various domain-specific knowledge to provide standardization of terminology usage and to improve interoperability. The growing number of such ontologies and terminologies and their increasing adoption in clinical, research and healthcare settings call for effective and efficient quality assurance and semantic enrichment techniques of these ontologies and terminologies. In this editorial, we provide an introductory summary of nine articles included in this supplement issue for quality assurance and enrichment of biological and biomedical ontologies and terminologies. The articles cover a range of standards including SNOMED CT, National Cancer Institute Thesaurus, Unified Medical Language System, North American Association of Central Cancer Registries and OBO Foundry Ontologies.


Semantic Web ◽  
2020 ◽  
pp. 1-45
Author(s):  
Valentina Anita Carriero ◽  
Aldo Gangemi ◽  
Maria Letizia Mancinelli ◽  
Andrea Giovanni Nuzzolese ◽  
Valentina Presutti ◽  
...  

Ontology Design Patterns (ODPs) have become an established and recognised practice for guaranteeing good quality ontology engineering. There are several ODP repositories where ODPs are shared as well as ontology design methodologies recommending their reuse. Performing rigorous testing is recommended as well for supporting ontology maintenance and validating the resulting resource against its motivating requirements. Nevertheless, it is less than straightforward to find guidelines on how to apply such methodologies for developing domain-specific knowledge graphs. ArCo is the knowledge graph of Italian Cultural Heritage and has been developed by using eXtreme Design (XD), an ODP- and test-driven methodology. During its development, XD has been adapted to the need of the CH domain e.g. gathering requirements from an open, diverse community of consumers, a new ODP has been defined and many have been specialised to address specific CH requirements. This paper presents ArCo and describes how to apply XD to the development and validation of a CH knowledge graph, also detailing the (intellectual) process implemented for matching the encountered modelling problems to ODPs. Relevant contributions also include a novel web tool for supporting unit-testing of knowledge graphs, a rigorous evaluation of ArCo, and a discussion of methodological lessons learned during ArCo’s development.


2009 ◽  
Vol 69 (5) ◽  
pp. AB370
Author(s):  
Fernando Vilariño ◽  
Stephan Ameling ◽  
Gerard Lacey ◽  
Anarta Ghosh ◽  
Stephen Patchett ◽  
...  

1998 ◽  
Vol 10 (1) ◽  
pp. 1-34 ◽  
Author(s):  
Alfonso Caramazza ◽  
Jennifer R. Shelton

We claim that the animate and inanimate conceptual categories represent evolutionarily adapted domain-specific knowledge systems that are subserved by distinct neural mechanisms, thereby allowing for their selective impairment in conditions of brain damage. On this view, (some of) the category-specific deficits that have recently been reported in the cognitive neuropsychological literature—for example, the selective damage or sparing of knowledge about animals—are truly categorical effects. Here, we articulate and defend this thesis against the dominant, reductionist theory of category-specific deficits, which holds that the categorical nature of the deficits is the result of selective damage to noncategorically organized visual or functional semantic subsystems. On the latter view, the sensory/functional dimension provides the fundamental organizing principle of the semantic system. Since, according to the latter theory, sensory and functional properties are differentially important in determining the meaning of the members of different semantic categories, selective damage to the visual or the functional semantic subsystem will result in a category-like deficit. A review of the literature and the results of a new case of category-specific deficit will show that the domain-specific knowledge framework provides a better account of category-specific deficits than the sensory/functional dichotomy theory.


Author(s):  
Shaw C. Feng ◽  
William Z. Bernstein ◽  
Thomas Hedberg ◽  
Allison Barnard Feeney

The need for capturing knowledge in the digital form in design, process planning, production, and inspection has increasingly become an issue in manufacturing industries as the variety and complexity of product lifecycle applications increase. Both knowledge and data need to be well managed for quality assurance, lifecycle impact assessment, and design improvement. Some technical barriers exist today that inhibit industry from fully utilizing design, planning, processing, and inspection knowledge. The primary barrier is a lack of a well-accepted mechanism that enables users to integrate data and knowledge. This paper prescribes knowledge management to address a lack of mechanisms for integrating, sharing, and updating domain-specific knowledge in smart manufacturing (SM). Aspects of the knowledge constructs include conceptual design, detailed design, process planning, material property, production, and inspection. The main contribution of this paper is to provide a methodology on what knowledge manufacturing organizations access, update, and archive in the context of SM. The case study in this paper provides some example knowledge objects to enable SM.


Sign in / Sign up

Export Citation Format

Share Document