AN EXPERIMENTAL INVESTIGATION OF FACTORS AFFECTING ELASTIC WAVE VELOCITIES IN POROUS MEDIA

Geophysics ◽  
1958 ◽  
Vol 23 (3) ◽  
pp. 459-493 ◽  
Author(s):  
M. R. J. Wyllie ◽  
A. R. Gregory ◽  
G. H. F. Gardner

An experimental investigation has been made of the factors which affect the velocity of vibratory signals in porous media. It is shown from the results of experiments carried out on appropriate natural and synthetic porous systems that the time‐average formula previously suggested by Wyllie, Gregory, and L. W. Gardner is of considerable utility. This formula states that [Formula: see text] where [Formula: see text] measured, [Formula: see text] in saturating liquid, [Formula: see text] in rock solid, and ϕ=volumetric porosity fraction. The effects are examined of differential compacting pressures on the applicability of this formula to consolidated and unconsolidated rocks. It is shown that the time‐average relationship cannot be applied to determine the total volumetric porosity of carbonate rocks which are vugular and fractured. In such rocks, paradoxically, this circumstance may be advantageous because of the lithological information that may be obtained from an appropriate combination of velocity and nuclear log data. The effects of oil and gas saturation on velocity have been examined experimentally and are found to be comparatively minor. The combination of velocity data with information from electric logs in order to locate zones of oil and gas saturation is shown to be generally valuable; this is particularly so when holes are drilled with oil‐base mud. Some discussion is given of the possible effects on velocity measurements of the relative wettability of rock surfaces by various liquids. Owing to instrumental limitations, it cannot necessarily be assumed that measurements made in the laboratory are directly applicable to the interpretation of velocity data obtained under field conditions.

Geophysics ◽  
1968 ◽  
Vol 33 (4) ◽  
pp. 584-595 ◽  
Author(s):  
A. Timur

Measurements of velocity of compressional waves in consolidated porous media, conducted within a temperature range of 26 °C to −36 °C, indicate that: (1) compressional wave velocity in water‐saturated rocks increases with decreasing temperature whereas it is nearly independent of temperature in dry rocks; (2) the shapes of the velocity versus temperature curves are functions of lithology, pore structure, and the nature of the interstitial fluids. As a saturated rock sample is cooled below 0 °C, the liquid in pore spaces with smaller surface‐to‐volume ratios (larger pores) begins to freeze and the liquid salinity controls the freezing process. As the temperature is decreased further, a point is reached where the surface‐to‐volume ratio in the remaining pore spaces is large enough to affect the freezing process, which is completed at the cryohydric temperature of the salts‐water system. In the ice‐liquid‐rock matrix system, present during freezing, a three‐phase, time‐average equation may be used to estimate the compressional wave velocities. Below the cryohydric temperature, elastic wave propagation takes place in a solid‐solid system consisting of ice and rock matrix. In this frozen state, the compressional wave velocity remains constant, has its maximum value, and may be estimated through use of the two‐phase time average equation. Limited field data for compressional wave velocities in permafrost indicate that pore spaces in permafrost contain not only liquid and ice, but also gas. Therefore, before attempting to make velocity estimates through the time‐average equations, the natures and percentages of pore saturants should be investigated.


2021 ◽  
Vol 33 (7) ◽  
pp. 076610
Author(s):  
Chunwei Zhang ◽  
Yun She ◽  
Yingxue Hu ◽  
Zijing Li ◽  
Weicen Wang ◽  
...  

Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Yuwei Li ◽  
Dan Jia

Unconventional oil and gas are important resources of future energy supply, and shale gas is the focus of the development of unconventional resources. Shale is a special kind rock of porous medium, and an orderly structure of beddings aligned in the horizontal direction where causing the strong elastic anisotropy of shale is easy. A new model has been established to calculate the fracture initiation pressure with the consideration of mechanical characteristics of shale and the anisotropic tensile strength when judging rock failure. The fracture initiation model established in this paper accurately reflects the stress anisotropy and matches well with the actual situation in porous media. Through the sensitivity analysis, the results show that σv/σH, Ev/EH, υv/υH, m/s, and A/B have a certain impact on the tangential stress when the circumferential angle changes, and there is a positive relationship between the initiation pressure and the above sensitive factors except for A/B. The results can provide a valuable and effective guidance for the prediction of fracture initiation pressure and fracture propagation mechanism under special stratum conditions of shale.


2021 ◽  
Author(s):  
Jimmy Xuekai Li ◽  
Reza Rezaee ◽  
Tobias M. Müller ◽  
Mahyar Madadi ◽  
Rupeng Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document