The effect of the invaded zone on full wavetrain acoustic logging

Geophysics ◽  
1984 ◽  
Vol 49 (6) ◽  
pp. 796-809 ◽  
Author(s):  
L. J. Baker

Most theoretical studies of acoustic borehole logging have employed the simple model of a fluid borehole in an infinite solid. This work attempts to account for the invaded zone using a more sophisticated model that additionally includes finite concentric shells surrounding the borehole. By appropriately choosing the physical parameters of these cylindrical shells, one can study the effect of the invaded zone, mudcake, or a cased hole on acoustic wavetrain components. The model accounts for geometric attenuation, but it assumes the formation is perfectly elastic. A key consideration is the distance that the acoustic log “sees” into the formation. The body of this report is devoted to studying the effect of the invaded zone, mudcake, or steel casing on the components of the full wavetrain (P-wave, S-wave, reflected modes, and Stoneley mode). I conclude that a sonic logging tool has a very shallow depth of investigation. This depth, for P- and S-waves, depends upon the spacing between the source and receiver. An approximate rule of thumb is that if the source‐to‐receiver separation is n feet, the logging tool sees n inches into the formation. Thus, a conventional logging tool sees less than 6 inches into the surrounding formation. Since attenuation of the P- and S-wave arrivals places a practical constraint on realistic source‐to‐receiver separations, the depth of investigation is limited to a maximum of about 2 ft. Therefore, an acoustic logging tool is usually capable of measuring properties of the invaded zone only. For the reader interested in the mathematical details of this work, the method of computation is described in Appendix A.

Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. D283-D291 ◽  
Author(s):  
Peng Liu ◽  
Wenxiao Qiao ◽  
Xiaohua Che ◽  
Xiaodong Ju ◽  
Junqiang Lu ◽  
...  

We have developed a new 3D acoustic logging tool (3DAC). To examine the azimuthal resolution of 3DAC, we have evaluated a 3D finite-difference time-domain model to simulate a case in which the borehole penetrated a rock formation boundary when the tool worked at the azimuthal-transmitting-azimuthal-receiving mode. The results indicated that there were two types of P-waves with different slowness in waveforms: the P-wave of the harder rock (P1) and the P-wave of the softer rock (P2). The P1-wave can be observed in each azimuthal receiver, but the P2-wave appears only in the azimuthal receivers toward the softer rock. When these two types of rock are both fast formations, two types of S-waves also exist, and they have better azimuthal sensitivity compared with P-waves. The S-wave of the harder rock (S1) appears only in receivers toward the harder rock, and the S-wave of the softer rock (S2) appears only in receivers toward the softer rock. A model was simulated in which the boundary between shale and sand penetrated the borehole but not the borehole axis. The P-wave of shale and the S-wave of sand are azimuthally sensitive to the azimuth angle variation of two formations. In addition, waveforms obtained from 3DAC working at the monopole-transmitting-azimuthal-receiving mode indicate that the corresponding P-waves and S-waves are azimuthally sensitive, too. Finally, we have developed a field example of 3DAC to support our simulation results: The azimuthal variation of the P-wave slowness was observed and can thus be used to reflect the azimuthal heterogeneity of formations.


1984 ◽  
Vol 74 (2) ◽  
pp. 361-376
Author(s):  
John Boatwright ◽  
Jon B. Fletcher

Abstract Seventy-three digitally recorded body waves from nine multiply recorded small earthquakes in Monticello, South Carolina, are analyzed to estimate the energy radiated in P and S waves. Assuming Qα = Qβ = 300, the body-wave spectra are corrected for attenuation in the frequency domain, and the velocity power spectra are integrated over frequency to estimate the radiated energy flux. Focal mechanisms determined for the events by fitting the observed displacement pulse areas are used to correct for the radiation patterns. Averaging the results from the nine events gives 27.3 ± 3.3 for the ratio of the S-wave energy to the P-wave energy using 0.5 〈Fi〉 as a lower bound for the radiation pattern corrections, and 23.7 ± 3.0 using no correction for the focal mechanisms. The average shift between the P-wave corner frequency and the S-wave corner frequency, 1.24 ± 0.22, gives the ratio 13.7 ± 7.3. The substantially higher values obtained from the integral technique implies that the P waves in this data set are depleted in energy relative to the S waves. Cursory inspection of the body-wave arrivals suggests that this enervation results from an anomalous site response at two of the stations. Using the ratio of the P-wave moments to the S-wave moments to correct the two integral estimates gives 16.7 and 14.4 for the ratio of the S-wave energy to the P-wave energy.


2018 ◽  
Vol 29 ◽  
pp. 00019
Author(s):  
Katarzyna Hubicka ◽  
Jakub Sokolowski

Seismic event consists of surface waves and body waves. Due to the fact that the body waves are faster (P-waves) and more energetic (S-waves) in literature the problem of their analysis is taken more often. The most universal information that is received from the recorded wave is its moment of arrival. When this information is obtained from at least four seismometers in different locations, the epicentre of the particular event can be estimated [1]. Since the recorded body waves may overlap in signal, the problem of wave onset moment is considered more often for faster P-wave than S-wave. This however does not mean that the issue of S-wave arrival time is not taken at all. As the process of manual picking is time-consuming, methods of automatic detection are recommended (these however may be less accurate). In this paper four recently developed methods estimating S-wave arrival are compared: the method operating on empirical mode decomposition and Teager-Kaiser operator [2], the modification of STA/LTA algorithm [3], the method using a nearest neighbour-based approach [4] and the algorithm operating on characteristic of signals’ second moments. The methods will be also compared to wellknown algorithm based on the autoregressive model [5]. The algorithms will be tested in terms of their S-wave arrival identification accuracy on real data originating from International Research Institutions for Seismology (IRIS) database.


Geophysics ◽  
1991 ◽  
Vol 56 (4) ◽  
pp. 550-557 ◽  
Author(s):  
S. T. Chen ◽  
E. A. Eriksen

We have found in field observations that the multipole sonic logging tool can effectively measure formation P‐wave and S‐wave data in a cased hole. The multipole tool, containing both monopole and quadrupole source‐receiver systems, was originally designed to log P‐ and S‐waves directly, in all lithologies, for an open borehole. The monopole source‐receiver system (P‐wave) operates at 7–10 kHz, as compared with 15–25 kHz for a conventional sonic tool, while the quadrupole source‐receiver system (S‐wave) operates at 3–7 kHz. These lower operating frequencies enable the signals to penetrate the well casing and cement more effectively than signals from a conventional sonic tool. As a result, the formation P‐ and S‐waves recorded by the multipole tool are generally much stronger than the unwanted waves which travel along the well casing and cement. Formation arrivals can be easily identified and separated from the casing arrivals for a wide range of lithologies. Logs run before and after the wells were cased show remarkable agreement even in severely washed out zones.


2019 ◽  
Vol 2 (2) ◽  
pp. 61-66
Author(s):  
Ahmad Fauzi Pohan ◽  
Rusnoviandi Rusnoviandi

Aktivitas gunung lumpur Bledug Kuwu di Jawa  Tengah merupakan fenomena yang menarik dikaji menggunakan pemodelan fisis. Tujuan penelitian ini adalah mengetahui parameter dari medium gunung lumpur Bledug Kuwu. Adapun pemodelan fisis yang dilakukan dengan menggunakan media fisis akuarium berukuran 59 × 59 × 37,3 cm yang diisi material dari lumpur Bledug Kuwu. Sumber letusan dihasilkan dari tekanan kompresor yang dapat diatur kedalaman (10.5, 13, dan 15.5 cm) dan sudut (30o, 45o dan 60o) sumbernya. Sensor yang digunakan geophone komponen vertikal sebanyak 3 buah dengan durasi perekaman selama 5 dan 2,5 detik. Data diambil dengan frekuensi sampel 2 dan 4 kHz untuk masing-masing durasi perekaman. Konfigurasi sumber dan geophone dibuat sesuai dengan pemodelan fisisnya. Pengukuran desnsitas lumpur menunjukkan angka sebesar 1200 kg/m3. Berdasarkan hasil analisis seismogram model fisis diperoleh kecepatan perambatan gelombang-P pada medium lumpur Bledug Kuwu adalah sebesar 48,74 m/s,dan gelombang-S sebesar 28,14 m/s dengan frekuensi dominan antara 20 sampai 25 Hz.   Bledug Kuwu mud volcano activity in Central Java is an interesting phenomenon to be studied using both physical  modeling. The objective of this study was to determine the physical parameters of the medium of Bledug Kuwu. The Physical model was an aquarium with a dimension of 59 × 59 × 37.3 cm filled with Bledug Kuwu’s mud. The eruption source is generated by a compressor pressure that can be controled both the depth(10.5, 13, and 15.5 cm) and the angel of the source (30o, 45o and 60o). The resulting seismic signals were recorded by using 3 vertical component geophones for 10 and 5 seconds durations at a frequency of 2 and 4 kHz respectivel, mud density 1200 kg/m3 . The physical modeling shows that the P-wave velocity of the Bledug Kuwu’s medium is 48.7 m/s, S-wave velocity of Bledug Kuwu’s is 28,14 m/s  with a dominant frequency of 20 to 25 Hz.


2020 ◽  
Vol 221 (3) ◽  
pp. 1765-1776 ◽  
Author(s):  
Jia Wei ◽  
Li-Yun Fu ◽  
Zhi-Wei Wang ◽  
Jing Ba ◽  
José M Carcione

SUMMARY The Lord–Shulman thermoelasticity theory combined with Biot equations of poroelasticity, describes wave dissipation due to fluid and heat flow. This theory avoids an unphysical behaviour of the thermoelastic waves present in the classical theory based on a parabolic heat equation, that is infinite velocity. A plane-wave analysis predicts four propagation modes: the classical P and S waves and two slow waves, namely, the Biot and thermal modes. We obtain the frequency-domain Green's function in homogeneous media as the displacements-temperature solution of the thermo-poroelasticity equations. The numerical examples validate the presence of the wave modes predicted by the plane-wave analysis. The S wave is not affected by heat diffusion, whereas the P wave shows an anelastic behaviour, and the slow modes present a diffusive behaviour depending on the viscosity, frequency and thermoelasticity properties. In heterogeneous media, the P wave undergoes mesoscopic attenuation through energy conversion to the slow modes. The Green's function is useful to study the physics in thermoelastic media and test numerical algorithms.


Geophysics ◽  
1996 ◽  
Vol 61 (2) ◽  
pp. 437-443 ◽  
Author(s):  
Ningya Cheng ◽  
Chuen Hon Cheng

Field data sets collected by an array monopole acoustic logging tool and a shear wave logging tool are processed and interpreted. The P‐ and S‐wave velocities of the formation are determined by threshold detection with cross‐correlation correction from the full waveform and the shear‐wave log, respectively. The array monopole acoustic logging data are also processed using the extended Prony’s method to estimate the borehole Stoneley wave phase velocity and attenuation as a function of frequency. The well formation between depths of 2950 and 3150 ft (899 and 960 m) can be described as an isotropic elastic medium. The inverted [Formula: see text] from the Stoneley wave phase velocity is in excellent agreement with the shear‐wave log results in this section. The well formation between the depths of 3715 and 3780 ft (1132 and 1152 m) can be described as a porous medium with shear‐wave velocity anisotropy about 10% to 20% and with the symmetry axis perpendicular to the borehole axis. The disagreement between the shear‐wave velocity from the Stoneley wave inversion and the direct shear‐wave log velocity in this section is beyond the errors in the measurements. Estimated permeabilities from low‐frequency Stoneley wave velocity and attenuation data are in good agreement with the core measurements. Also it is proven that the formation permeability is not the cause of the discrepancy. From the estimated “shear/pseudo‐Rayleigh” phase velocities in the array monopole log and the 3-D finite‐difference synthetics in the anisotropic formation, the discrepancy can best be explained as shear‐wave anisotropy.


Geophysics ◽  
2001 ◽  
Vol 66 (5) ◽  
pp. 1519-1527 ◽  
Author(s):  
Robert Sun ◽  
George A. McMechan

Reflected P‐to‐P and P‐to‐S converted seismic waves in a two‐component elastic common‐source gather generated with a P‐wave source in a two‐dimensional model can be imaged by two independent scalar reverse‐time depth migrations. The inputs to migration are pure P‐ and S‐waves that are extracted by divergence and curl calculations during (shallow) extrapolation of the elastic data recorded at the earth’s surface. For both P‐to‐P and P‐to‐S converted reflected waves, the imaging time at each point is the P‐wave traveltime from the source to that point. The extracted P‐wave is reverse‐time extrapolated and imaged with a P‐velocity model, using a finite difference solution of the scalar wave equation. The extracted S‐wave is reverse‐time extrapolated and imaged similarly, but with an S‐velocity model. Converted S‐wave data requires a polarity correction prior to migration to ensure constructive interference between data from adjacent sources. Synthetic examples show that the algorithm gives satisfactory results for laterally inhomogeneous models.


2020 ◽  
Vol 223 (2) ◽  
pp. 1118-1129
Author(s):  
Mohammad Mahdi Abedi ◽  
Alexey Stovas

SUMMARY In exploration seismology, the acquisition, processing and inversion of P-wave data is a routine. However, in orthorhombic anisotropic media, the governing equations that describe the P-wave propagation are coupled with two S waves that are considered as redundant noise. The main approach to free the P-wave signal from the S-wave noise is the acoustic assumption on the wave propagation. The conventional acoustic assumption for orthorhombic media zeros out the S-wave velocities along three orthogonal axes, but leaves significant S-wave artefacts in all other directions. The new acoustic assumption that we propose mitigates the S-wave artefacts by zeroing out their velocities along the three orthogonal symmetry planes of orthorhombic media. Similar to the conventional approach, our method reduces the number of required model parameters from nine to six. As numerical experiments on multiple orthorhombic models show, the accuracy of the new acoustic assumption also compares well to the conventional approach. On the other hand, while the conventional acoustic assumption simplifies the governing equations, the new acoustic assumption further complicates them—an issue that emphasizes the necessity of simple approximate equations. Accordingly, we also propose simpler rational approximate phase-velocity and eikonal equations for the new acoustic orthorhombic media. We show a simple ray tracing example and find out that the proposed approximate equations are still highly accurate.


Geophysics ◽  
1994 ◽  
Vol 59 (10) ◽  
pp. 1512-1529 ◽  
Author(s):  
Gopa S. De ◽  
Donald F. Winterstein ◽  
Mark A. Meadows

We compared P‐ and S‐wave velocities and quality factors (Q’S) from vertical seismic profiling (VSP) and sonic log measurements in five wells, three from the southwest San Joaquin Basin of California, one from near Laredo, Texas, and one from northern Alberta. Our purpose was to investigate the bias between sonic log and VSP velocities and to examine to what degree this bias might be a consequence of dispersion. VSPs and sonic logs were recorded in the same well in every case. Subsurface formations were predominantly clastic. The bias found was that VSP transit times were greater than sonic log times, consistent with normal dispersion. For the San Joaquin wells, differences in S‐wave transit times averaged 1–2 percent, while differences in P‐wave transit times averaged 6–7 percent. For the Alberta well, the situation was reversed, with differences in S‐wave transit times being about 6 percent, while those for P‐waves were 2.5 percent. For the Texas well, the differences averaged about 4 percent for both P‐ and S‐waves. Drift‐curve slopes for S‐waves tended to be low where the P‐wave slopes were high and vice versa. S‐wave drift‐curve slopes in the shallow California wells were 5–10 μs/ft (16–33 μs/m) and the P‐wave slopes were 15–30 μs/ft (49–98 μs/m). The S‐wave slope in sandstones in the northern Alberta well was up to 50 μs/ft (164 μs/m), while the P‐wave slope was about 5 μs/ft (16 μs/m). In the northern Alberta well the slopes for both P‐ and S‐waves flattened in the carbonate. In the Texas well, both P‐ and S‐wave drifts were comparable. We calculated (Q’s) from a velocity dispersion formula and from spectral ratios. When the two Q’s agreed, we concluded that velocity dispersion resulted solely from absorption. These Q estimation methods were reliable only for Q values smaller than 20. We found that, even with data of generally outstanding quality, Q values determined by standard methods can have large uncertainties, and negative Q’s may be common.


Sign in / Sign up

Export Citation Format

Share Document