biot’s coefficient
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 10)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Abdelwahab Noufal ◽  
Ibrahim Altameemi ◽  
Abdulla Shehab ◽  
Hamda Al Shehhi

Abstract The rock properties in the reservoir rocks represent stiffness and strength properties, while the unexpected variation in the dense intervals varies with the fabric and other sedimentological and rock types. The purpose of this paper is to present the mechanical rock testing parameters of Lower Cretaceous reservoirs, including the tight intervals in a giant field of Abu Dhabi. In order to enable the evaluation of the mechanical parameters, there is a need to assess the reservoir rocks, as well as the stress configuration around and away from the wells. This paper introduces a workflow that integrates multidisciplinary data to develop a geomechanical model aiming to reduce drilling risks and optimizing reservoir appraisal. Cores, wireline logs, CT scans, SEM and thin sections were used to characterize the fracture systems and build the robust seismic driven geomechanical model. A conceptual model has been firstly developed, where reservoir heterogeneity has been quantitatively described in relation to tectonic deformation events, followed by incorporating a 1D-MEM's (Mechanical Earth Model), which used to calibrate the seismic based elastic properties. Results indicate good correlations developed between dynamic and static Young's Modulus, Biot's coefficient, Friction Angle and Unconfined Compressive Strength by incorporating the results of rock mechanics testing, leading to create a dynamic YME-driven correlation. Good correlations were also obtained between Effective Porosity, and Static Young's modulus, Biot's coefficient, Friction angle and Unconfined compressive strength, leading to create a Porosity-driven correlation. In addition, friction angle correlation increases if proper data is considered, making feasible to build a correlation in both dynamic YME and Effective Porosity. Finally, the presence of several partially conductive fracture sets within the reservoir, including both sub-vertical and moderately dipping conjugate sets, with gently dipping/bed-parallel fractures. They have been developed under a predominant strike-slip regime that swaps a normal faulting stress regime at depth. Fracture porosity is related to micro- and meso-scale fractures, and fracture permeability is more significant compared to the storage capacity of the matrix porosity. Rock fabrics are varied in different zones, which likely explains differences in the mechanical behaviour.


2021 ◽  
Vol 80 (10) ◽  
pp. 7865-7877
Author(s):  
Hossein Salemi ◽  
Alexy Yurikov ◽  
Maxim Lebedev ◽  
Pouria Behnoudfar ◽  
Alireza Rezagholilou ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3056
Author(s):  
Andrzej Nowakowski

This work discusses the results of a study of the influence of rates of change of confining pressure on the result of a drained compressibility tests intended to determine the modulus of compressibility of a rock skeleton Ks. A series of cyclical compressibility tests was performed on samples of sandstone soaked in kerosene, for various rates of compression and decompression of the pressure liquid filling the cell and the pore volume of the sample. The studies showed that the deformability of the tested sample was directly proportional to the rate of change of the confining pressure. As a consequence, the value of the Ks modulus and Biot coefficient α decreased with increasing sample load rate. This phenomenon should be attributed primarily to equilibration of the liquid pressure inside the high-pressure cell with the liquid pressure in the sample pore space, caused by filtration of the pore liquid. These phenomena prove that the filtration process impacts the values of the modulus of compressibility of the rock skeleton Ks and of Biot coefficient α determined on the basis of the experiment. This is significant in the context of the use of Biot equations as constitutive equations for a porous rock medium.


2021 ◽  
Author(s):  
Dariusz Knez ◽  
Herimitsinjo Rajaoalison

AbstractThe drilling-related geomechanics requires a better understanding of the encountered formation properties such as poroelastic parameters. This paper shows set of laboratory results of the dynamic Young’s modulus, Poisson’s ratio, and Biot’s coefficient for dry and water-saturated Istebna sandstone samples under a series of confining pressure conditions at two different temperatures. The predicted results from Wyllie’s equation were compared to the measured ones in order to show the effect of saturation on the rock weakening. A negative correlation has been identified between Poisson’s ratio, Biot’s coefficient and confining pressure, while a positive correlation between confining pressure and Young’s modulus. The predicted dynamic poroelastic rock properties using the P-wave value from Wyllie’s equation are different from measured ones. It shows the important influence of water saturation on rock strength, which is confirmed by unconfined compressive strength measurement. Linear equations have been fitted for the laboratory data and are useful for the analysis of coupled stress and pore pressure effects in geomechanical problems. Such results are useful for many drilling applications especially in evaluation of such cases as wellbore instability and many other drilling problems.


Poromechanics ◽  
2020 ◽  
pp. 65-70
Author(s):  
P. Devillers ◽  
M.S. El Youssoufi ◽  
C. Saix

Poromechanics ◽  
2020 ◽  
pp. 561-566
Author(s):  
Denis Fabre ◽  
Jerzy Gustkiewicz

Author(s):  
Tobias B. Gram ◽  
Frederik P. Ditlevsen ◽  
Klaus Mosegaard ◽  
Ida L. Fabricius

2020 ◽  
Vol 32 (6) ◽  
pp. 1533-1557
Author(s):  
Laura Miller ◽  
Raimondo Penta

Abstract We derive the quasi-static governing equations for the macroscale behaviour of a linear elastic porous composite comprising a matrix interacting with inclusions and/or fibres, and an incompressible Newtonian fluid flowing in the pores. We assume that the size of the pores (the microscale) is comparable with the distance between adjacent subphases and is much smaller than the size of the whole domain (the macroscale). We then decouple spatial scales embracing the asymptotic (periodic) homogenization technique to derive the new macroscale model by upscaling the fluid–structure interaction problem between the elastic constituents and the fluid phase. The resulting system of partial differential equations is of poroelastic type and encodes the properties of the microstructure in the coefficients of the model, which are to be computed by solving appropriate cell problems which reflect the complexity of the given microstructure. The model reduces to the limit case of simple composites when there are no pores, and standard Biot’s poroelasticity whenever only the matrix–fluid interaction is considered. We further prove rigorous properties of the coefficients, namely (a) major and minor symmetries of the effective elasticity tensor, (b) positive definiteness of the resulting Biot’s modulus, and (c) analytical identities which allow us to define an effective Biot’s coefficient. This model is applicable when the interactions between multiple solid phases occur at the porescale, as in the case of various systems such as biological aggregates, constructs, bone, tendons, as well as rocks and soil.


Sign in / Sign up

Export Citation Format

Share Document