Global nonlinear inversion of transient EM data from conducting surroundings using a free‐space plate model
A platelike conducting body in free space is used as a model to invert transient electromagnetic data using the very fast simulated annealing procedure as a global optimization tool. When the host rock conductivity is non‐zero, acceptable fits between the observed and computed responses are difficult to obtain. In general, the conducting body is assigned a lower conductance, larger dimensions (strike length and depth extent) and a smaller depth than the true values. We approximate the response of a conducting host to yield reliable estimates of model parameters as well as a good fit between the observed and computed responses. Our procedure is based on the assumption that the observed electromagnetic response is the sum of the response due to the conductive target and the response due to conducting surroundings (host and overburden). It is also assumed that the host response is laterally invariant, implying a layered earth and fixed source‐receiver geometry. The validity of the superposition assumption is tested against the full solution for a conductive plate in a finite conducting host. The efficacy of our approach is demonstrated using noise‐free and noisy synthetic data and two field examples measured in different geological conditions.