Analytic study of the geometrical spreading of P-waves in a layered transversely isotropic medium with a vertical symmetry axis

Geophysics ◽  
2000 ◽  
Vol 65 (4) ◽  
pp. 1305-1315 ◽  
Author(s):  
Hongbo Zhou ◽  
George A. McMechan

An analytical formula for geometrical spreading is derived for a horizontally layered transversely isotropic medium with a vertical symmetry axis (VTI). With this expression, geometrical spreading can be determined using only the anisotropy parameters in the first layer, the traveltime derivatives, and the source‐receiver offset. Explicit, numerically feasible expressions for geometrical spreading are obtained for special cases of transverse isotropy (weak anisotropy and elliptic anisotropy). Geometrical spreading can be calculated for transversly isotropic (TI) media by using picked traveltimes of primary nonhyperbolic P-wave reflections without having to know the actual parameters in the deeper subsurface; no ray tracing is needed. Synthetic examples verify the algorithm and show that it is numerically feasible for calculation of geometrical spreading. For media with a few (4–5) layers, relative errors in the computed geometrical spreading remain less than 0.5% for offset/depth ratios less than 1.0. Errors that change with offset are attributed to inaccuracy in the expression used for nonhyberbolic moveout. Geometrical spreading is most sensitive to errors in NMO velocity, followed by errors in zero‐offset reflection time, followed by errors in anisotropy of the surface layer. New relations between group and phase velocities and between group and phase angles are shown in appendices.

Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. D79-D84 ◽  
Author(s):  
Alexey Stovas

The moveout approximations can be used in kinematic modeling, velocity analysis, and time migration. The generalized moveout approximation involves five approximation parameters and has several known approximations as special cases. A method is demonstrated for determining parameters of the generalized nonhyperbolic moveout approximation for qP- and qSV-waves in a homogeneous transversely isotropic medium with vertical symmetry axis (VTI medium). The additional parameters for the generalized approximation are computed from the hyperbolic asymptote at infinite offset. Comparison with a few well-known moveout approximations for higher-order terms in the Taylor series and asymptotic behavior shows that the generalized moveout approximation is superior to other nonhyperbolic approximations. A few numerical examples for qP- and qSV-waves in a VTI medium also indicate that the generalized approximation performs the best.


Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 2082-2091 ◽  
Author(s):  
Bjørn Ursin ◽  
Ketil Hokstad

Compensation for geometrical spreading is important in prestack Kirchhoff migration and in amplitude versus offset/amplitude versus angle (AVO/AVA) analysis of seismic data. We present equations for the relative geometrical spreading of reflected and transmitted P‐ and S‐wave in horizontally layered transversely isotropic media with vertical symmetry axis (VTI). We show that relatively simple expressions are obtained when the geometrical spreading is expressed in terms of group velocities. In weakly anisotropic media, we obtain simple expressions also in terms of phase velocities. Also, we derive analytical equations for geometrical spreading based on the nonhyperbolic traveltime formula of Tsvankin and Thomsen, such that the geometrical spreading can be expressed in terms of the parameters used in time processing of seismic data. Comparison with numerical ray tracing demonstrates that the weak anisotropy approximation to geometrical spreading is accurate for P‐waves. It is less accurate for SV‐waves, but has qualitatively the correct form. For P waves, the nonhyperbolic equation for geometrical spreading compares favorably with ray‐tracing results for offset‐depth ratios less than five. For SV‐waves, the analytical approximation is accurate only at small offsets, and breaks down at offset‐depth ratios less than unity. The numerical results are in agreement with the range of validity for the nonhyperbolic traveltime equations.


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. C175-C185 ◽  
Author(s):  
Ivan Pšenčík ◽  
Véronique Farra

We have developed approximate nonhyperbolic P-wave moveout formulas applicable to weakly or moderately anisotropic media of arbitrary anisotropy symmetry and orientation. Instead of the commonly used Taylor expansion of the square of the reflection traveltime in terms of the square of the offset, we expand the square of the reflection traveltime in terms of weak-anisotropy (WA) parameters. No acoustic approximation is used. We specify the formulas designed for anisotropy of arbitrary symmetry for the transversely isotropic (TI) media with the axis of symmetry oriented arbitrarily in the 3D space. Resulting formulas depend on three P-wave WA parameters specifying the TI symmetry and two angles specifying the orientation of the axis of symmetry. Tests of the accuracy of the more accurate of the approximate formulas indicate that maximum relative errors do not exceed 0.3% or 2.5% for weak or moderate P-wave anisotropy, respectively.


Geophysics ◽  
1995 ◽  
Vol 60 (1) ◽  
pp. 268-284 ◽  
Author(s):  
Ilya Tsvankin

Description of reflection moveout from dipping interfaces is important in developing seismic processing methods for anisotropic media, as well as in the inversion of reflection data. Here, I present a concise analytic expression for normal‐moveout (NMO) velocities valid for a wide range of homogeneous anisotropic models including transverse isotropy with a tilted in‐plane symmetry axis and symmetry planes in orthorhombic media. In transversely isotropic media, NMO velocity for quasi‐P‐waves may deviate substantially from the isotropic cosine‐of‐dip dependence used in conventional constant‐velocity dip‐moveout (DMO) algorithms. However, numerical studies of NMO velocities have revealed no apparent correlation between the conventional measures of anisotropy and errors in the cosine‐of‐dip DMO correction (“DMO errors”). The analytic treatment developed here shows that for transverse isotropy with a vertical symmetry axis, the magnitude of DMO errors is dependent primarily on the difference between Thomsen parameters ε and δ. For the most common case, ε − δ > 0, the cosine‐of‐dip–corrected moveout velocity remains significantly larger than the moveout velocity for a horizontal reflector. DMO errors at a dip of 45 degrees may exceed 20–25 percent, even for weak anisotropy. By comparing analytically derived NMO velocities with moveout velocities calculated on finite spreads, I analyze anisotropy‐induced deviations from hyperbolic moveout for dipping reflectors. For transversely isotropic media with a vertical velocity gradient and typical (positive) values of the difference ε − δ, inhomogeneity tends to reduce (sometimes significantly) the influence of anisotropy on the dip dependence of moveout velocity.


Geophysics ◽  
2003 ◽  
Vol 68 (5) ◽  
pp. 1600-1610 ◽  
Author(s):  
Andres Pech ◽  
Ilya Tsvankin ◽  
Vladimir Grechka

Nonhyperbolic (long‐spread) moveout provides essential information for a number of seismic inversion/processing applications, particularly for parameter estimation in anisotropic media. Here, we present an analytic expression for the quartic moveout coefficient A4 that controls the magnitude of nonhyperbolic moveout of pure (nonconverted) modes. Our result takes into account reflection‐point dispersal on irregular interfaces and is valid for arbitrarily anisotropic, heterogeneous media. All quantities needed to compute A4 can be evaluated during the tracing of the zero‐offset ray, so long‐spread moveout can be modeled without time‐consuming multioffset, multiazimuth ray tracing. The general equation for the quartic coefficient is then used to study azimuthally varying nonhyperbolic moveout of P‐waves in a dipping transversely isotropic (TI) layer with an arbitrary tilt ν of the symmetry axis. Assuming that the symmetry axis is confined to the dip plane, we employed the weak‐anisotropy approximation to analyze the dependence of A4 on the anisotropic parameters. The linearized expression for A4 is proportional to the anellipticity coefficient η ≈ ε − δ and does not depend on the individual values of the Thomsen parameters. Typically, the magnitude of nonhyperbolic moveout in tilted TI media above a dipping reflector is highest near the reflector strike, whereas deviations from hyperbolic moveout on the dip line are substantial only for mild dips. The azimuthal variation of the quartic coefficient is governed by the tilt ν and reflector dip φ and has a much more complicated character than the NMO–velocity ellipse. For example, if the symmetry axis is vertical (VTI media, ν = 0) and the dip φ < 30°, A4 goes to zero on two lines with different azimuths where it changes sign. If the symmetry axis is orthogonal to the reflector (this model is typical for thrust‐and‐fold belts), the strike‐line quartic coefficient is defined by the well‐known expression for a horizontal VTI layer (i.e., it is independent of dip), while the dip‐line A4 is proportional to cos4 φ and rapidly decreases with dip. The high sensitivity of the quartic moveout coefficient to the parameter η and the tilt of the symmetry axis can be exploited in the inversion of wide‐azimuth, long‐spread P‐wave data for the parameters of TI media.


Geophysics ◽  
2000 ◽  
Vol 65 (1) ◽  
pp. 232-246 ◽  
Author(s):  
Vladimir Grechka ◽  
Ilya Tsvankin

Just as the transversely isotropic model with a vertical symmetry axis (VTI media) is typical for describing horizontally layered sediments, transverse isotropy with a tilted symmetry axis (TTI) describes dipping TI layers (such as tilted shale beds near salt domes) or crack systems. P-wave kinematic signatures in TTI media are controlled by the velocity [Formula: see text] in the symmetry direction, Thomsen’s anisotropic coefficients ε and δ, and the orientation (tilt ν and azimuth β) of the symmetry axis. Here, we show that all five parameters can be obtained from azimuthally varying P-wave NMO velocities measured for two reflectors with different dips and/or azimuths (one of the reflectors can be horizontal). The shear‐wave velocity [Formula: see text] in the symmetry direction, which has negligible influence on P-wave kinematic signatures, can be found only from the moveout of shear waves. Using the exact NMO equation, we examine the propagation of errors in observed moveout velocities into estimated values of the anisotropic parameters and establish the necessary conditions for a stable inversion procedure. Since the azimuthal variation of the NMO velocity is elliptical, each reflection event provides us with up to three constraints on the model parameters. Generally, the five parameters responsible for P-wave velocity can be obtained from two P-wave NMO ellipses, but the feasibility of the moveout inversion strongly depends on the tilt ν. If the symmetry axis is close to vertical (small ν), the P-wave NMO ellipse is largely governed by the NMO velocity from a horizontal reflector Vnmo(0) and the anellipticity coefficient η. Although for mild tilts the medium parameters cannot be determined separately, the NMO-velocity inversion provides enough information for building TTI models suitable for time processing (NMO, DMO, time migration). If the tilt of the symmetry axis exceeds 30°–40° (e.g., the symmetry axis can be horizontal), it is possible to find all P-wave kinematic parameters and construct the anisotropic model in depth. Another condition required for a stable parameter estimate is that the medium be sufficiently different from elliptical (i.e., ε cannot be close to δ). This limitation, however, can be overcome by including the SV-wave NMO ellipse from a horizontal reflector in the inversion procedure. While most of the analysis is carried out for a single layer, we also extend the inversion algorithm to vertically heterogeneous TTI media above a dipping reflector using the generalized Dix equation. A synthetic example for a strongly anisotropic, stratified TTI medium demonstrates a high accuracy of the inversion (subject to the above limitations).


Sign in / Sign up

Export Citation Format

Share Document