3-D description of normal moveout in anisotropic inhomogeneous media

Geophysics ◽  
1998 ◽  
Vol 63 (3) ◽  
pp. 1079-1092 ◽  
Author(s):  
Vladimir Grechka ◽  
Ilya Tsvankin

We present a new equation for normal‐moveout (NMO) velocity that describes azimuthally dependent reflection traveltimes of pure modes from both horizontal and dipping reflectors in arbitrary anisotropic inhomogeneous media. With the exception of anomalous areas such as those where common‐midpoint (CMP) reflection time decreases with offset, the azimuthal variation of NMO velocity represents an ellipse in the horizontal plane, with the orientation of the axes determined by the properties of the medium and the direction of the reflector normal. In general, a minimum of three azimuthal measurements is necessary to reconstruct the best‐fit ellipse and obtain NMO velocity in all azimuthal directions. This result provides a simple way to correct for the azimuthal variation in stacking velocity often observed in 3-D surveys. Even more importantly, analytic expressions for the parameters of the NMO ellipse can be used in the inversion of moveout data for the anisotropic coefficients of the medium. For homogeneous transversely isotropic media with a vertical axis of symmetry (VTI media), our equation for azimuthally dependent NMO velocity from dipping reflectors becomes a relatively simple function of phase velocity and its derivatives. We show that the zero‐dip NMO velocity Vnmo(0) and the anisotropic coefficient η are sufficient to describe the P-wave NMO velocity for any orientation of the CMP line with respect to the dip plane of the reflector. Using our formalism, Vnmo(0) and η (the only parameters needed for time processing) can be found from the dip‐dependent NMO velocity at any azimuth or, alternatively, from the azimuthally dependent NMO for a single dipping reflector. We also apply this theory to more complicated azimuthally anisotropic models with the orthorhombic symmetry used to describe fractured reservoirs. For reflections from horizontal interfaces in orthorhombic media, the axes of the normal moveout ellipse are aligned with the vertical symmetry planes. Therefore, azimuthal P-wave moveout measurements can be inverted for the orientation of the symmetry planes (typically determined by the fracture direction) and the NMO velocities within them. If the vertical velocity is known, symmetry‐plane NMO velocities make it possible to estimate two anisotropic parameters equivalent to Thomsen’s coefficient δ for transversely isotropic media.

Geophysics ◽  
2015 ◽  
Vol 80 (1) ◽  
pp. T51-T62 ◽  
Author(s):  
Qi Hao ◽  
Alexey Stovas ◽  
Tariq Alkhalifah

Analytic representation of the offset-midpoint traveltime equation for anisotropy is very important for prestack Kirchhoff migration and velocity inversion in anisotropic media. For transversely isotropic media with a vertical symmetry axis, the offset-midpoint traveltime resembles the shape of a Cheops’ pyramid. This is also valid for homogeneous 3D transversely isotropic media with a horizontal symmetry axis (HTI). We extended the offset-midpoint traveltime pyramid to the case of homogeneous 3D HTI. Under the assumption of weak anellipticity of HTI media, we derived an analytic representation of the P-wave traveltime equation and used Shanks transformation to improve the accuracy of horizontal and vertical slownesses. The traveltime pyramid was derived in the depth and time domains. Numerical examples confirmed the accuracy of the proposed approximation for the traveltime function in 3D HTI media.


Geophysics ◽  
1995 ◽  
Vol 60 (1) ◽  
pp. 268-284 ◽  
Author(s):  
Ilya Tsvankin

Description of reflection moveout from dipping interfaces is important in developing seismic processing methods for anisotropic media, as well as in the inversion of reflection data. Here, I present a concise analytic expression for normal‐moveout (NMO) velocities valid for a wide range of homogeneous anisotropic models including transverse isotropy with a tilted in‐plane symmetry axis and symmetry planes in orthorhombic media. In transversely isotropic media, NMO velocity for quasi‐P‐waves may deviate substantially from the isotropic cosine‐of‐dip dependence used in conventional constant‐velocity dip‐moveout (DMO) algorithms. However, numerical studies of NMO velocities have revealed no apparent correlation between the conventional measures of anisotropy and errors in the cosine‐of‐dip DMO correction (“DMO errors”). The analytic treatment developed here shows that for transverse isotropy with a vertical symmetry axis, the magnitude of DMO errors is dependent primarily on the difference between Thomsen parameters ε and δ. For the most common case, ε − δ > 0, the cosine‐of‐dip–corrected moveout velocity remains significantly larger than the moveout velocity for a horizontal reflector. DMO errors at a dip of 45 degrees may exceed 20–25 percent, even for weak anisotropy. By comparing analytically derived NMO velocities with moveout velocities calculated on finite spreads, I analyze anisotropy‐induced deviations from hyperbolic moveout for dipping reflectors. For transversely isotropic media with a vertical velocity gradient and typical (positive) values of the difference ε − δ, inhomogeneity tends to reduce (sometimes significantly) the influence of anisotropy on the dip dependence of moveout velocity.


2019 ◽  
Vol 220 (2) ◽  
pp. 839-855
Author(s):  
Da Shuai ◽  
Alexey Stovas

SUMMARY We develop a method to compute frequency-dependent kinematic parameters for an effective orthorhombic (ORT) medium. In order to investigate the influence of fracture weaknesses on the kinematic parameters, the effective ORT medium is composed based on the linear slip theory and derived by applying the limited Baker–Campbell–Hausdorff series. The frequency-dependent kinematic parameters including vertical velocity, two normal moveout velocities defined in vertical symmetry planes, and three anelliptic parameters (two of them are defined in vertical symmetry plane and one parameter is the cross-term one). We also investigate the influence of volume fraction, frequency, velocity ratio and fracture weaknesses on the effective kinematic parameters.


Geophysics ◽  
1994 ◽  
Vol 59 (4) ◽  
pp. 591-596 ◽  
Author(s):  
Suhas Phadke ◽  
S. Kapotas ◽  
N. Dai ◽  
Ernest R. Kanasewich

Wave propagation in transversely isotropic media is governed by the horizontal and vertical wave velocities. The quasi‐P(qP) wavefront is not an ellipse; therefore, the propagation cannot be described by the wave equation appropriate for elliptically anisotropic media. However, for a limited range of angles from the vertical, the dispersion relation for qP‐waves can be approximated by an ellipse. The horizontal velocity necessary for this approximation is different from the true horizontal velocity and depends upon the physical properties of the media. In the method described here, seismic data is migrated using a 45-degree wave equation for elliptically anisotropic media with the horizontal velocity determined by comparing the 45-degree elliptical dispersion relation and the quasi‐P‐dispersion relation. The method is demonstrated for some synthetic data sets.


Geophysics ◽  
2004 ◽  
Vol 69 (3) ◽  
pp. 699-707 ◽  
Author(s):  
Andrés Pech ◽  
Ilya Tsvankin

Interpretation and inversion of azimuthally varying nonhyperbolic reflection moveout requires accounting for both velocity anisotropy and subsurface structure. Here, our previously derived exact expression for the quartic moveout coefficient A4 is applied to P‐wave reflections from a dipping interface overlaid by a medium of orthorhombic symmetry. The weak‐anisotropy approximaton for the coefficient A4 in a homogeneous orthorhombic layer is controlled by the anellipticity parameters η(1), η(2), and η(3), which are responsible for time processing of P‐wave data. If the dip plane of the reflector coincides with the vertical symmetry plane [x1, x3], A4 on the dip line is proportional to the in‐plane anellipticity parameter η(2) and always changes sign for a dip of 30○. The quartic coefficient on the strike line is a function of all three η–parameters, but for mild dips it is mostly governed by η(1)—the parameter defined in the incidence plane [x2, x3]. Whereas the magnitude of the dip line A4 typically becomes small for dips exceeding 45○, the nonhyperbolic moveout on the strike line may remain significant even for subvertical reflectors. The character of the azimuthal variation of A4 depends on reflector dip and is quite sensitive to the signs and relative magnitudes of η(1), η(2), and η(3). The analytic results and numerical modeling show that the azimuthal pattern of the quartic coefficient can contain multiple lobes, with one or two azimuths of vanishing A4 between the dip and strike directions. The strong influence of the anellipticity parameters on the azimuthally varying coefficient A4 suggests that nonhyperbolic moveout recorded in wide‐azimuth surveys can help to constrain the anisotropic velocity field. Since for typical orthorhombic models that describe naturally fractured reservoirs the parameters η(1,2,3) are closely related to the fracture density and infill, the results of azimuthal nonhyperbolic moveout analysis can also be used in reservoir characterization.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. C79-C97 ◽  
Author(s):  
Qi Hao ◽  
Alexey Stovas

We have developed an approximate method to calculate the P-wave phase and group velocities for orthorhombic media. Two forms of analytic approximations for P-wave velocities in orthorhombic media were built by analogy with the five-parameter moveout approximation and the four-parameter velocity approximation for transversely isotropic media, respectively. They are called the generalized moveout approximation (GMA)-type approximation and the Fomel approximation, respectively. We have developed approximations for elastic and acoustic orthorhombic media. We have characterized the elastic orthorhombic media in Voigt notation, and we can describe the acoustic orthorhombic media by introducing the modified Alkhalifah’s notation. Our numerical evaluations indicate that the GMA-type and Fomel approximations are accurate for elastic and acoustic orthorhombic media with strong anisotropy, and the GMA-type approximation is comparable with the approximation recently proposed by Sripanich and Fomel. Potential applications of the proposed approximations include forward modeling and migration based on the dispersion relation and the forward traveltime calculation for seismic tomography.


Sign in / Sign up

Export Citation Format

Share Document