Reply by authors to discussion by M. Al‐Chalabi

Geophysics ◽  
1974 ◽  
Vol 39 (5) ◽  
pp. 693-694
Author(s):  
P. H. McGrath ◽  
P. J. Hood

The success of any optimization method is primarily related to the smoothness and simplicity of the objective function in parameter space. Most optimization methods are successful when used with well‐behaved objective functions. As the complexity of the objective function in parameter space increases, much more sophisticated optimization strategies are required to assure convergence to an absolute (global) minimum.

2011 ◽  
Vol 133 (1) ◽  
Author(s):  
Moslem Kazemi ◽  
G. Gary Wang ◽  
Shahryar Rahnamayan ◽  
Kamal Gupta

Current metamodel-based design optimization methods rarely deal with problems of not only expensive objective functions but also expensive constraints. In this work, we propose a novel metamodel-based optimization method, which aims directly at reducing the number of evaluations for both objective function and constraints. The proposed method builds on existing mode pursuing sampling method and incorporates two intriguing strategies: (1) generating more sample points in the neighborhood of the promising regions, and (2) biasing the generation of sample points toward feasible regions determined by the constraints. The former is attained by a discriminative sampling strategy, which systematically generates more sample points in the neighborhood of the promising regions while statistically covering the entire space, and the latter is fulfilled by utilizing the information adaptively obtained about the constraints. As verified through a number of test benchmarks and design problems, the above two coupled strategies result in significantly low number of objective function evaluations and constraint checks and demonstrate superior performance compared with similar methods in the literature. To the best of our knowledge, this is the first metamodel-based global optimization method, which directly aims at reducing the number of evaluations for both objective function and constraints.


2014 ◽  
Vol 721 ◽  
pp. 464-467
Author(s):  
Tao Fu ◽  
Qin Zhong Gong ◽  
Da Zhen Wang

In view of robustness of objective function and constraints in robust design, the method of maximum variation analysis is adopted to improve the robust design. In this method, firstly, we analyses the effect of uncertain factors in design variables and design parameters on the objective function and constraints, then calculate maximum variations of objective function and constraints. A two-level optimum mathematical model is constructed by adding the maximum variations to the original constraints. Different solving methods are used to solve the model to study the influence to robustness. As a demonstration, we apply our robust optimization method to an engineering example, the design of a machine tool spindle. The results show that, compared with other methods, this method of HPSO(hybrid particle swarm optimization) algorithm is superior on solving efficiency and solving results, and the constraint robustness and the objective robustness completely satisfy the requirement, revealing that excellent solving method can improve robustness.


Author(s):  
A.A.M. Zahir ◽  
Syed Sahal Nazli Alhady ◽  
A.A.A Wahab ◽  
M.F. Ahmad

PID Optimization by Genetic Algorithm or any intelligent optimization method is widely being used recently. The main issue is to select a suitable objective function based on error criteria. Original error criteria that is widely being used such as ITAE, ISE, ITSE and IAE is insufficient in enhancing some of the performance parameter. Parameter such as settling time, rise time, percentage of overshoot, and steady state error is included in the objective function. Weightage is added into these parameters based on users’ performance requirement. Based on the results, modified error criteria show improvement in all performance parameter after being modified. All of the error criteria produce 0% overshoot, 29.51%-39.44% shorter rise time, 21.11%-42.98% better settling time, 10% to 53.76% reduction in steady state error. The performance of modified objective function in minimizing the error signal is reduced. It can be concluded that modification of objective function by adding performance parameter into consideration could improve the performance of rise time, settling time, overshoot percentage, and steady state error


Author(s):  
Francisco Casesnoves

<p>In a previous contribution, the mathematical-computational base of Interior Optimization Method was demonstrated. Electronics applications were performed with numerical optimization data and graphical proofs. In this evoluted-improved paper a series of electronics applications of Interior Optimization in superconductors BCS algorithms/theory are shown. In addition, mathematical developments of Interior Optimization Methods related to systems of Nonlinear Equations are proven. The nonlinear multiobjective optimization problem constitutes a difficult task to find/determine a global minimum, approximated-global minimum, or a convenient local minimum whith/without constraints. Nonlinear systems of equations principles set the base in the previous article for further development of Interior Optimization and Interior-Graphical Optimization [Casesnoves, 2016-7]. From Graphical Optimization 3D optimization stages [Casesnoves, 2016-7], the demonstration that solution of nonlinear systems of equations is not unique in general emerges. Software-engineering and computational simulations are shown with electronics superconductors [several elements, Type 1 superconductors] and electronics physics applications. Extensions to similar applications for materials-tribology models and Biomedical Tribology are explained.</p>


2021 ◽  
Author(s):  
Yixuan Wang ◽  
Faruk Alpak ◽  
Guohua Gao ◽  
Chaohui Chen ◽  
Jeroen Vink ◽  
...  

Abstract Although it is possible to apply traditional optimization algorithms to determine the Pareto front of a multi-objective optimization problem, the computational cost is extremely high, when the objective function evaluation requires solving a complex reservoir simulation problem and optimization cannot benefit from adjoint-based gradients. This paper proposes a novel workflow to solve bi-objective optimization problems using the distributed quasi-Newton (DQN) method, which is a well-parallelized and derivative-free optimization (DFO) method. Numerical tests confirm that the DQN method performs efficiently and robustly. The efficiency of the DQN optimizer stems from a distributed computing mechanism which effectively shares the available information discovered in prior iterations. Rather than performing multiple quasi-Newton optimization tasks in isolation, simulation results are shared among distinct DQN optimization tasks or threads. In this paper, the DQN method is applied to the optimization of a weighted average of two objectives, using different weighting factors for different optimization threads. In each iteration, the DQN optimizer generates an ensemble of search points (or simulation cases) in parallel and a set of non-dominated points is updated accordingly. Different DQN optimization threads, which use the same set of simulation results but different weighting factors in their objective functions, converge to different optima of the weighted average objective function. The non-dominated points found in the last iteration form a set of Pareto optimal solutions. Robustness as well as efficiency of the DQN optimizer originates from reliance on a large, shared set of intermediate search points. On the one hand, this set of searching points is (much) smaller than the combined sets needed if all optimizations with different weighting factors would be executed separately; on the other hand, the size of this set produces a high fault tolerance. Even if some simulations fail at a given iteration, DQN’s distributed-parallel information-sharing protocol is designed and implemented such that the optimization process can still proceed to the next iteration. The proposed DQN optimization method is first validated on synthetic examples with analytical objective functions. Then, it is tested on well location optimization problems, by maximizing the oil production and minimizing the water production. Furthermore, the proposed method is benchmarked against a bi-objective implementation of the MADS (Mesh Adaptive Direct Search) method, and the numerical results reinforce the auspicious computational attributes of DQN observed for the test problems. To the best of our knowledge, this is the first time that a well-parallelized and derivative-free DQN optimization method has been developed and tested on bi-objective optimization problems. The methodology proposed can help improve efficiency and robustness in solving complicated bi-objective optimization problems by taking advantage of model-based search optimization algorithms with an effective information-sharing mechanism.


2011 ◽  
Vol 16 (3) ◽  
pp. 451-460 ◽  
Author(s):  
Antanas Žilinskas ◽  
Julius Žilinskas

A simplicial statistical model of multimodal functions is used to construct a global optimization algorithm. The search for the global minimum in the multidimensional space is reduced to the search over the edges of simplices covering the feasible region combined with the refinement of the cover. The refinement is performed by subdivision of selected simplices taking into account the point where the objective function value has been computed at the current iteration. For the search over the edges the one-dimensional P-algorithm based on the statistical smooth function model is adapted. Differently from the recently proposed algorithm here the statistical model is used for modelling the behaviour of the objective function not over the whole simplex but only over its edges. Testing results of the proposed algorithm are included.


2012 ◽  
Vol 16 (3) ◽  
pp. 873-891 ◽  
Author(s):  
W. J. Vanhaute ◽  
S. Vandenberghe ◽  
K. Scheerlinck ◽  
B. De Baets ◽  
N. E. C. Verhoest

Abstract. The calibration of stochastic point process rainfall models, such as of the Bartlett-Lewis type, suffers from the presence of multiple local minima which local search algorithms usually fail to avoid. To meet this shortcoming, four relatively new global optimization methods are presented and tested for their ability to calibrate the Modified Bartlett-Lewis Model. The list of tested methods consists of: the Downhill Simplex Method, Simplex-Simulated Annealing, Particle Swarm Optimization and Shuffled Complex Evolution. The parameters of these algorithms are first optimized to ensure optimal performance, after which they are used for calibration of the Modified Bartlett-Lewis model. Furthermore, this paper addresses the choice of weights in the objective function. Three alternative weighing methods are compared to determine whether or not simulation results (obtained after calibration with the best optimization method) are influenced by the choice of weights.


2013 ◽  
Vol 448-453 ◽  
pp. 4296-4303
Author(s):  
Jia Rui Dong ◽  
Chui Yong Zheng ◽  
Guang Yuan Kan ◽  
Zhi Jia Li ◽  
Min Zhao

The practical hydrothermal system is highly complex and possesses nonlinear relationship of the problem variables, cascading nature of hydraulic network and water transport delay, which make the problem of finding global optimum difficult using standard optimization methods. This paper presents a new approach to the solution of optimal power generation to short-term hydrothermal scheduling problem, using shuffled complex evolution (SCE-UA) method. The proposed method introduces the new concept of competitive evolution and complex shuffling, which ensure that the information on the parameter space gained by each of individual complexes is shared throughout the entire population. This conducts an efficient search of the parameter space. In this study, the hydrothermal scheduling is formulated as an objective problem that maximizes the social welfare. Penalty function is proposed to handle the equality, inequality constraints especially active power balance constraint and ramp rate constraints. The simulation results reveal that SCE-UA effectively overcomes the premature phenomenon and improves the global convergence and optimization searching capability. It is a relatively consistent, effective and efficient optimization method in solving the short-term hydrothermal scheduling problem.


Author(s):  
Jimmy S. Issa

Recently, a new vibration absorber setup was proposed where the absorber is placed between the dynamic system and its moving support. The problem was solved and design guidelines were proposed using the classical absorber design technique. In this work, the unique optimal absorber parameters are determined with the aim of minimizing the maximum of the primary system amplitude. For a given stiffness ratio of the system, the optimal mass and damping ratios are obtained analytically using an optimization method based on invariant points of the objective function. Similar to the case of the classical vibration absorber setup, these points are independent of the system damping ratio. It is shown that a trade-off relationship exists between these points, therefore the optimal mass ratio is determined first by a proper placement of the invariant points. Two suboptimal damping ratios are determined by forcing one of the two peaks of the objective function to coincide with one of the invariant points. Then, the optimal damping ratio is obtained from the average of the two suboptimal damping ratios. This approximate analytical solution is validated through comparison with the exact optimal parameters which were calculated numerically using two different numerical optimization methods. The first is based on the genetic algorithm technique and the second on the downhill simplex method. The optimal parameters are plotted and several examples are considered where the objective function is plotted in its approximate and exact optimal shapes.


2007 ◽  
Vol 48 (3) ◽  
pp. 315-325 ◽  
Author(s):  
J. Ugon ◽  
S. Kouhbor ◽  
M. Mammadov ◽  
A. Rubinov ◽  
A. Kruger

AbstractFacility location problems are one of the most common applications of optimization methods. Continuous formulations are usually more accurate, but often result in complex problems that cannot be solved using traditional optimization methods. This paper examines theuse of a global optimization method—AGOP—for solving location problems where the objective function is discontinuous. This approach is motivated by a real-world application in wireless networks design.


Sign in / Sign up

Export Citation Format

Share Document