scholarly journals Recording seismic reflections using rigidly interconnected geophones

Geophysics ◽  
2001 ◽  
Vol 66 (6) ◽  
pp. 1838-1842 ◽  
Author(s):  
C. M. Schmeissner ◽  
K. T. Spikes ◽  
D. W. Steeples

Ultrashallow seismic reflection surveys require dense spatial sampling during data acquisition, which increases their cost. In previous efforts to find ways to reduce these costs, we connected geophones rigidly to pieces of channel iron attached to a farm implement. This method allowed us to plant the geophones in the ground quickly and automatically. The rigidly interconnected geophones used in these earlier studies detected first‐arrival energy along with minor interfering seismic modes, but they did not detect seismic reflections. To examine further the feasibility of developing rigid geophone emplacement systems to detect seismic reflections, we experimented with four pieces of channel iron, each 2.7 m long and 10 cm wide. Each segment was equipped with 18 geophones rigidly attached to the channel iron at 15‐cm intervals, and the spikes attached to all 18 geophones were pushed into the ground simultaneously. The geophones detected both refracted and reflected energy; however, no significant signal distortion or interference attributable to the rigid coupling of the geophones to the channel iron was observed in the data. The interfering seismic modes mentioned from the previous experiments were not detected, nor was any P‐wave propagation noted within the channel iron. These results show promise for automating and reducing the cost of ultrashallow seismic reflection and refraction surveys.

Geophysics ◽  
1986 ◽  
Vol 51 (4) ◽  
pp. 902-913 ◽  
Author(s):  
Kenneth M. Tubman ◽  
C. H. Cheng ◽  
S. P. Cole ◽  
M. Nafi Toksöz

A generalization of the technique of Tubman et al. (1984) allows the inclusion of intermediate fluid layers in the theoretical study of elastic wave propagation in a layered borehole. The number and location of fluid layers are arbitrary. The only restrictions are that the central cylinder is fluid and the outermost formation is solid. Synthetic full‐waveform microseismograms in poorly bonded cased holes can be generated, allowing investigation of free pipe and cement sheathed pipe with no bond to the formation. If there is a fluid layer between the steel and the cement, the steel is free to ring. The first arrival in this situation is from the casing, even with an extremely thin fluid layer or microannulus. The amplitude and duration of the pipe signal depend upon the thickness of the fluid layer. While the first arrival is from the casing, the formation body‐wave energy is present. The character of the waveform will vary as the formation parameters vary. If the duration of the steel arrival is small, it is possible to distinguish the formation P-wave arrival. If the fluid layer is between the cement and the formation, then the steel is well bonded to the cement but the cement is not bonded to the formation. In this case the thicknesses of the fluid and cement layers are important in determining the nature of the first arrival. If there is a large amount of cement bonded to the steel, the cement can damp out the ringing of the pipe and make it possible to distinguish formation arrivals. If there is less cement bonded to the steel, the cement does not damp out the steel ringing but the cement rings along with the steel and the first arrival is from the combination of the steel and the cement. The velocity of this wave depends upon the velocities and thicknesses of the steel and cement layers.


2019 ◽  
Vol 221 (1) ◽  
pp. 1-19
Author(s):  
Lucía Lozano ◽  
Juan Vicente Cantavella ◽  
Jaime Barco

SUMMARY The SW Iberian margin is well known for its complex tectonic setting and crustal structure and by the occurrence of moderate magnitude earthquakes and some great tsunamigenic earthquakes. Fortunately, many seismic reflection and refraction profiles have been carried out, providing detailed information about the crustal structure of the main geologic domains in this region. These studies show a first-order variation due to the transition from oceanic to continental domain, large-scale heterogeneities within the crust and an irregular Moho topography. Routine earthquake locations in this area have been usually computed using a general 1-D velocity model which is clear that cannot account for such a heterogeneous structure. In addition, regional seismic stations used to locate the Gulf of Cadiz seismicity are on land and far away to the east, implying large azimuthal gaps and distances. In this context, a 3-D approach seems necessary to properly solve the crustal velocity field and improve earthquake location in this area. With this purpose, we present a new digital 3-D P-wave velocity distribution for the crust and uppermost mantle derived from previously published controlled-source seismic experiments carried out in SW Iberia and the Gulf of Cadiz over the last 40 yr. We have reviewed more than 50 wide-angle and multichannel seismic reflection and refraction profiles and digitized the most significant published 2-D seismic velocity models, performing an updated compilation of crustal parameters (P-wave velocities and geometry and depth of the main crustal interfaces). These velocities as a function of position and depth have been interpolated using ordinary kriging algorithm to obtain, in the form of a regular georeferenced 20 × 20 × 1 km grid spacing, a high-resolution 3-D P-wave velocity distribution for the crust and uppermost mantle and a continuous Moho depth map of the whole area of this study (33°N–41°N latitude and 15°W–5°W longitude). Since current seismic location tools allow the implementation of 3-D grid structures, we have applied our 3-D model to relocate a selection of moderate earthquakes occurred in the studied region using a probabilistic nonlinear method. In the Gulf of Cadiz area the probabilistic approximation provides maximum likelihood hypocentres located within the uppermost mantle with the majority of depths ranging between 20 and 45 km. This model would subsequently be implemented at the Spanish Seismic Network for the routine relocation of the seismicity of the area.


Geophysics ◽  
1999 ◽  
Vol 64 (3) ◽  
pp. 809-814 ◽  
Author(s):  
Don W. Steeples ◽  
Gregory S. Baker ◽  
Chris Schmeissner ◽  
Brian K. Macy

We examined the feasibility of using seismic reflections to image the upper 10 m of the earth’s surface quickly and effectively by rigidly attaching geophones to a wooden board at 5-cm intervals. The shallow seismic reflection information obtained was equivalent to control‐test data gathered using classic, single‐geophone plants with identical 5-cm intervals. Tests were conducted using both a .22-caliber rifle source and a 30.06-rifle source. In both cases, the results were unexpected: in response to our use of small, high‐resolution seismic sources at offsets of a few meters, we found little intergeophone interference that could be attributed to the presence of the board. Furthermore, we noted very little difference in a 60-ms intra‐alluvial reflection obtained using standard geophone plants versus that obtained using board‐mounted geophones. For both sources, amplitude spectra were nearly identical for data gathered with and without the board. With the 30.06 source, filtering at high‐frequency passbands revealed a wave mode of unknown origin that appears to be related to the presence of the board; however, this mode did not interfere with the usefulness of the shallow‐reflection data. The results of these experiments suggest that deploying large numbers of closely spaced geophones simultaneously—perhaps even automatically—is possible. Should this method of planting geophones prove practical after further testing, the cost‐effectiveness of very shallow seismic reflection imaging may be enhanced. The technique also may be useful at greater reflector depths in situations employing bunched geophones. However, this approach may not be applicable in all circumstances because larger energy sources may induce interference between the geophones and produce undesirable modes of motion within the medium holding the geophones.


1973 ◽  
Vol 78 (35) ◽  
pp. 8711-8720 ◽  
Author(s):  
Bhoopal R. Naini ◽  
Robert Leyden

1987 ◽  
Vol 78 (4) ◽  
pp. 269-274 ◽  
Author(s):  
T. Poodle

ABSTRACTThe Scottish Hydrometric Network consists of a number of river gauging stations which have been located at sites considered suitable to provide long term flow records. Economic recession has placed some stress on the gauging programme, and has given rise to extensive closures of gauging stations in England and, to a minor extent so far, in Scotland. The way in which the network became established provides a mixture of strengths and weaknesses which could have unpredictable consequences in an adverse economic climate. Changing technology provides some opportunity to reduce the cost of data acquisition and improve the deployment of manpower, while maintaining data standards. In these changing circumstances, particularly with extensive use of computer systems, it is important that standards are established for data returned to the Water Archive and that the network is not allowed to degenerate by default.


Geophysics ◽  
1988 ◽  
Vol 53 (7) ◽  
pp. 894-902 ◽  
Author(s):  
Ruhi Saatçilar ◽  
Nezihi Canitez

Amplitude‐ and frequency‐modulated wave motion constitute the ground‐roll noise in seismic reflection prospecting. Hence, it is possible to eliminate ground roll by applying one‐dimensional, linear frequency‐modulated matched filters. These filters effectively attenuate the ground‐roll energy without damaging the signal wavelet inside or outside the ground roll’s frequency interval. When the frequency bands of seismic reflections and ground roll overlap, the new filters eliminate the ground roll more effectively than conventional frequency and multichannel filters without affecting the vertical resolution of the seismic data.


1988 ◽  
Vol 35 (3) ◽  
pp. 275-294 ◽  
Author(s):  
B. R. Goleby ◽  
C. Wright ◽  
C. D. N. Collins ◽  
B. L. N. Kennett

1981 ◽  
Vol 71 (6) ◽  
pp. 1731-1741
Author(s):  
I. N. Gupta ◽  
R. A. Hartenberger

Abstract An analysis of seismic field data from surface shots in two radically different geologic environments shows significantly different seismic phases at the two sites. At the first site, which has a layered sedimentary section, five distinct phases are observed: the P-wave first arrival; a complex wave train consisting of higher mode Rayleigh waves; a precursor to air-blast wave; the air blast wave; and the air-coupled Rayleigh waves. Records from the second site, overlying an unlayered mass of igneous rocks, show only three distinct seismic phases: the P-wave first arrival; a simple wave train of fundamental-mode Rayleigh and Love waves; and an air blast wave. Peak ground velocity, based on the average of the three largest amplitudes in the surface waves preceding the air blast wave, scales well with yield for both sites. Measurements of peak ground velocity may be used to estimate yields of explosive charges at either site within a factor of about 2 if the source distance is known. The scaling relationship appears to be valid over a wide range of yields and site geological conditions.


Author(s):  
Suresh Dande ◽  
◽  
Robert R. Stewart ◽  
Nikolay Dyaur ◽  
◽  
...  

Laboratory physical models play an important role in understanding rock properties and wave propagation, both theoretically and at the field scale. In some cases, 3D-printing technology can be adopted to construct complex rock models faster, more inexpensively, and with more specific features than previous model-building techniques. In this study, we use 3D-printed rock models to assist in understanding the effects of various fluids (air, water, engine oil, crude oil, and glycerol) on the models’ elastic properties. We first used a 3D-printed, 1-in. cube-shaped layered model. This model was created with a 6% primary porosity and a bulk density of 0.98 g/cc with VTI anisotropy. We next employed a similar cube but with horizontal inclusions embedded in the layered background, which contributed to its total 24% porosity (including primary porosity). For air to liquid saturation, P-velocities increased for all liquids in both models, with the highest increase being with glycerol (57%) and an approximately 45% increase for other fluids in the inclusion model. For the inclusion model (dry and saturated), we observed a greater difference between two orthogonally polarized S-wave velocities (Vs1 and Vs2) than between two P-wave velocities (VP0 and VP90). We attribute this to the S2-wave (polarized normal to both the layering and the plane of horizontal inclusions), which appears more sensitive to horizontal inclusions than the P-wave. For the inclusion model, Thomsen’s P-wave anisotropic parameter (ɛ) decreased from 26% for the air case to 4% for the water-saturated cube and to 1% for glycerol saturation. The small difference between the bulk modulus of the frame and the pore fluid significantly reduces the velocity anisotropy of the medium, making it almost isotropic. We compared our experimental results with theory and found that predictions using Schoenberg’s linear slip theory combined with Gassmann’s anisotropic equation were closer to actual measurements than Hudson’s isotropic calculations. This work provides insights into the usefulness of 3D-printed models to understand elastic rock properties and wave propagation under various fluid saturations.


Sign in / Sign up

Export Citation Format

Share Document