Adaptive decomposition of multicomponent ocean‐bottom seismic data into downgoing and upgoing P‐ and S‐waves

Geophysics ◽  
2003 ◽  
Vol 68 (3) ◽  
pp. 1091-1102 ◽  
Author(s):  
K. M. Schalkwijk ◽  
C. P. A. Wapenaar ◽  
D. J. Verschuur

With wavefield decomposition, the recorded wavefield at a certain depth level can be separated into upgoing and downgoing wavefields as well as into P‐ and S‐waves. The medium parameters at the considered depth level (e.g., just below the ocean‐bottom) need to be known in order to be able to do a decomposition. In general, these parameters are unknown and, in addition, measurement‐related issues, such as geophone coupling and crosstalk between the different components, need to be dealt with. In order to apply decomposition to field data, an adaptive five‐stage decomposition scheme was developed in which these issues are addressed. In this study, the adaptive decomposition scheme is tested on a data example with a relatively shallow water depth (∼120 m), consisting recordings from of a full line of ocean‐bottom receivers. Although some of the individual stages in the decomposition scheme are more difficult to apply because of stronger interference between events compared to data acquired over deeper water, the end result is satisfying. Also, a good decomposition result is obtained for the S‐waves. The extension of the decomposition scheme to a complete line of ocean‐bottom cable data consists of a repeated application of the procedure for each receiver. The resulting decomposed upgoing P‐ and S‐wavefields are processed, yielding poststack time migrated images of the subsurface. Comparison with the images obtained from the original (i.e., not decomposed) measurements shows that wavefield decomposition just below the ocean bottom leads to a strong attenuation of multiply reflected events at the sea surface and better event definition in both P‐ and S‐wave sections. Other decomposition effects like improved angle‐dependent amplitudes cannot be evaluated in this way.

1969 ◽  
Vol 59 (5) ◽  
pp. 1863-1887
Author(s):  
James H. Whitcomb

abstract Array data processing is applied to long-period records of S waves at a network of five Fennoscandian seismograph stations (Uppsala, Umeå, Nurmijärvi, Kongsberg, Copenhagen) with a maximum separation of 1300 km. Records of five earthquakes and one underground explosion are included in the study. The S motion is resolved into SH and SV, and after appropriate time shifts the individual traces are summed, both directly and after weighting. In general, high signal correlation exists among the different stations involved resulting in more accurate time readings, especially for records which have amplitudes that are too small to be read normally. S-wave station residuals correlate with the general crustal type under each station. In addition, the Fennoscandian shield may have a higher SH/SV velocity ratio than the adjacent tectonic area to the northwest.SV-to-P conversion at the base of the crust can seriously interfere with picking the onset of Sin normal record reading. The study demonstrates that, for epicentral distances beyond about 30°, existing networks of seismograph stations can be successfully used for array processing of long-period arrivals, especially the S arrivals.


Geophysics ◽  
2004 ◽  
Vol 69 (5) ◽  
pp. 1329-1337 ◽  
Author(s):  
Remco Muijs ◽  
Johan O. A. Robertsson ◽  
Klaus Holliger

Dual‐sensor (hydrophone and three‐component geophone) data recorded on the sea floor allow the elastic wavefield to be decomposed into its upgoing and downgoing P‐ and S‐wave components. Most decomposition algorithms require accurate knowledge of the elastic properties of the sea floor in the vicinity of the receivers and properly calibrated sensors, in order for the data to be a faithful vector representation of the ground motion. We present a multistep adaptive decomposition scheme that provides the necessary information directly from the data by imposing constraints on intermediate decomposition results. The proposed scheme requires no a priori information and only a minimal amount of user‐defined input, thus allowing multicomponent data to be decomposed in an automated data‐driven fashion. The performance of the technique is illustrated using seabed data acquired in the North Sea with prototype single sensors (multicomponent geophones individually sampled). Realistic sea floor properties and sensor calibration operators are obtained, and elastic decomposition of the calibrated data generally yields good results. Dominant water‐layer reverberations are successfully attenuated and primary reflections are substantially enhanced in the computed upgoing P‐wave potential just below the sea floor. In contrast, the result for the upgoing S‐wave potential is somewhat less convincing; although the energy of water‐layer multiples is substantially reduced, notable amounts of undesired multiple energy remain in this section after decomposition, particularly at high offsets. These imperfections may point to inaccuracies in the parametrization of the sea floor or remaining inaccuracies in the vector fidelity of the horizontal geophone recordings. Nevertheless, the results obtained with the extended data‐driven decomposition scheme are at least comparable to previously published results.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. C319-C336 ◽  
Author(s):  
Yuriy Ivanov ◽  
Alexey Stovas

Normal moveout (NMO) velocity is a commonly used tool in the seismic industry nowadays. In 3D surveys, the variation of the NMO velocity in a horizontal plane is elliptic in shape for the anisotropy or heterogeneity of any strength (apart from a few exotic cases). The NMO ellipse is used for Dix-type inversion and can provide important information on the strength of anisotropy and the orientation of the vertical symmetry planes, which can correspond, for example, to fractures’ orientation and compliances. To describe a vertically fractured finely layered medium (the fracture is orthogonal to the layering), an anisotropy of orthorhombic symmetry is commonly used. In areas with complicated geology and stress distribution, the orientation of the orthorhombic symmetry planes can be considerably altered from the initial position. We have derived the exact equations for the NMO ellipse in an elastic tilted orthorhombic layer with an arbitrary orientation of the symmetry planes. We have evaluated pure and converted wave modes and determined that the influence of the orientation upon the NMO ellipse for all the waves is strong. We have considered acoustic and ellipsoidal orthorhombic approximations of the NMO ellipse equations, which we used to develop a numerical inversion scheme. We determined that in the most general case of arbitrary orientation of the orthorhombic symmetry planes, the inversion results are unreliable due to significant trade-offs between the parameters. We have evaluated S-wave features such as point singularities (slowness surfaces of the split S-waves cross) and triplications (due to concaveness of the individual S-wave mode slowness surface) and their influence on the NMO ellipse.


Geophysics ◽  
2005 ◽  
Vol 70 (2) ◽  
pp. S43-S59 ◽  
Author(s):  
Egil Holvik ◽  
Lasse Amundsen

This paper shows that Betti's reciprocity theorem gives an integral equation procedure to eliminate from the physical multicomponent-source, multicomponent-receiver seismic measurements the effect of the physical source radiation pattern and the response of the physical overburden (that is, the medium above the receiver plane). The physical multicomponent sources are assumed to be orthogonally aligned anywhere above the multicomponent-receiver depth level. Other than the position of the sources, no source characteristics are required. The method, denoted the Betti designature/elastic demultiple, has the following additional characteristics: it preserves primary amplitudes while eliminating all waves scattered from the overburden; it requires no knowledge of the medium below the receiver level; it requires no knowledge of the medium above the receiver level; it requires information only of the local density and elastic wave propagation velocities at the receiver level to decompose the physical seismic measurements into upgoing and downgoing waves. Following the Betti designature/elastic demultiple step is an elastic wavefield decomposition step that decomposes the data into PP-, PS-, SP-, and SS-wave responses that would be recorded from idealized compressional-wave and shear-wave sources and receivers. The combined elastic wavefield decomposition on the source and receiver side gives data equivalent to data from a hypothetical survey with overburden absent, with single-component compressional and shear-wave sources, and single-component compressional and shear-wave receivers. When the medium is horizontally layered, the Betti designature/elastic demultiple scheme followed by the elastic source-receiver decomposition scheme greatly simplifies and is conveniently implemented as deterministic multidimensional deconvolution and elastic source-receiver wavefield decomposition of common-source gathers (or common-receiver gathers when source array variations are negligible). Betti designature/elastic demultiple followed by source-receiver wavefield decomposition applies to three different seismic experiments: a 9-component (9C) land seismic experiment, a 12-component (12C) ocean-bottom seismic experiment, and an 18-component (18C) borehole seismic experiment. For the land and ocean-bottom seismic experiments, an additional geophone should be deployed below the zero-offset geophone to predict the source-induced vertical traction vector at the source location. A numerical example for the 12C ocean-bottom seismic experiment over a horizontally layered medium validates the Betti designature/elastic demultiple scheme.


Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. S57-S79 ◽  
Author(s):  
Chen Tang ◽  
George A. McMechan

Elastic reverse time migration (E-RTM) has limitations when the migration velocities contain strong contrasts. First, the traditional scheme of P/S-wave mode separation is based on Helmholtz’s equations, which ignore the conversion between P- and S-waves at the current separation time. Thus, it contains an implicit assumption of the constant shear modulus and requires smoothing the heterogeneous model to approximately satisfy a locally constant condition. Second, the vector-based imaging condition needs to use the reflection-image normal, and it also cannot give the correct polarity of the PP image in all possible conditions. Third, the angle-domain common-image gathers (ADCIGs) calculated using the Poynting vectors (PVs) do not consider the wave interferences that happen at each reflector. Therefore, smooth models are often used for E-RTM. We relax this condition by proposing an improved data flow that involves three new contributions. The first contribution is an improved system of P/S-wave mode separation that considers the converted wave generated at the current time, and thus it does not require the constant-shear-modulus assumption. The second contribution is the new elastic imaging conditions based on multidirectional vectors; they can give the correct image polarity in all possible conditions without knowledge of the reflection-image normal. The third contribution is two methods to calculate multidirectional propagation vectors (PRVs) for RTM images and ADCIGs: One is the elastic multidirectional PV, and the other uses the sign of wavenumber-over-frequency ([Formula: see text]) ratio obtained from an amplitude-preserved approximate-propagation-angle-based wavefield decomposition to convert the particle velocities into multidirectional PRVs. The robustness of the improved data flow is determined by several 2D numerical examples. Extension of the schemes into 3D and amplitude-preserved imaging conditions is also possible.


Geophysics ◽  
2007 ◽  
Vol 72 (3) ◽  
pp. V67-V77 ◽  
Author(s):  
James E. Gaiser

Differences in the frequency response of horizontal and vertical detectors (vector infidelity) in ocean bottom cable (OBC) surveys can cause problems for multicomponent processing, such as S-wave birefringence and amplitude variation with azimuth (AVA) analyses, and combining vertical and hydrophone data for water-born multiple suppression. One source of this problem is poor detector coupling with the seabed that produces resonances and phase distortions. Coupling and data quality are generally excellent for the inline component. However, the crossline component often exhibits low-frequency resonance compared to the inline. Also, OBCs are susceptible to rotational modes about the cable axis that produce spurious S-waves on the vertical component. I derive a method for correcting the crossline and vertical components based on a model of OBC detector coupling, and design vector operators in the frequency domain from shots over many offsets and azimuths. The crossline data are corrected,relative to the inline, assuming linear polarization of early, near-offset arrivals on the radial-horizontal component. Thus, the transverse-horizontal component provides a convenient error or objective function to be minimized for operator design. Using the corrected crossline, as a model of rotational modes, leads to an estimate of spurious S-waves on the vertical component, which are adaptively subtracted. Data examples from the Gulf of Mexico and offshore Nigeria are presented to illustrate improvements in crossline frequency content and match to inline data. Typically there is [Formula: see text] reduction in error using the rms ratio of transverse-to-radial component data computed in the time domain. Suppression of spurious S-waves from the vertical component without undesirable effects of low-cut or [Formula: see text] filters is shown for prestack and poststack data. Also, vector operators indicate they contain important information related to resonance modes of crossline coupling and rotational modes associated with seabed-deployed versus buried OBCs.


Geophysics ◽  
2002 ◽  
Vol 67 (6) ◽  
pp. 1972-1982 ◽  
Author(s):  
Remco Muijs ◽  
Klaus Holliger ◽  
Johan O. A. Robertsson

Dense spatial recording patterns of three‐component (3C) receivers allow for direct wavefield decomposition through explicit calculation of divergence and curl of the recorded elastic wavefield. Since this approach is based upon the observation of small phase shifts, it requires highly accurate deployment of the receiver configurations. To study the feasibility of a recently proposed P/S‐wave separation scheme, we systematically assess the effects of position and orientation errors of one or several geophones within the recording pattern on technique performance. We find that realistic deployment errors can significantly affect estimates of the divergence and curl of particle velocity. The errors induced by mispositioned or misoriented geophones differ for each of the geophones that make up a pattern. Moreover, the inaccuracies vary with the angle of incidence, potentially affecting analysis procedures applied to the data at a later stage, such as amplitude variation with offset (AVO). Based on a relative L1‐criterion, the position of each receiver needs to be accurate within 10% of the length of the sides of the configuration to obtain meaningful divergence and curl estimates. Furthermore, the output is particularly sensitive to misorientations of geophones, requiring that the orientations of all geophones be accurate within 2°. These observations point to significant difficulties when applying this technique. To alleviate this problem, we present an approach to detect and compensate for such deployment‐related inaccuracies prior to explicit P/S‐wave separation. This strategy is based on a pyramid‐shaped receiver configuration and relies on minimizing the differences between the divergence and curl estimates calculated over the pyramid and each of the four subtetrahedra that comprise the pyramid.


Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. S333-S343 ◽  
Author(s):  
Pengfei Yu ◽  
Jianhua Geng ◽  
Jiqiang Ma

The acoustic-elastic coupled equation (AECE) has several advantages when compared with conventional scalar-wave-based elastic reverse time migration (ERTM) methods used to image ocean-bottom multicomponent seismic data. In particular, vector-wave-based ERTM requires vectorial P- and S-waves on the source and receiver sides, but these cannot be directly obtained from wavefield extrapolation using AECE. Therefore, we have developed a P- and S-wave vector decomposition (VD) approach within AECE; this approach enables the deduction of a novel VD-based AECE, from which vectorial P- and S-waves can be obtained directly via wavefield extrapolation. We are also able to derive a new formulation suitable for vector-wave-based ERTM of ocean-bottom multicomponent seismic data that can generate a phase-preserved PS-image. Three synthetic examples illustrate the validity and effectiveness of our new method.


Author(s):  
Hao Wang ◽  
Ning Li ◽  
Caizhi Wang ◽  
Hongliang Wu ◽  
Peng Liu ◽  
...  

Abstract In the process of dipole-source acoustic far-detection logging, the azimuth of the fracture outside the borehole can be determined with the assumption that the SH–SH wave is stronger than the SV–SV wave. However, in slow formations, the considerable borehole modulation highly complicates the dipole-source radiation of SH and SV waves. A 3D finite-difference time-domain method is used to investigate the responses of the dipole-source reflected shear wave (S–S) in slow formations and explain the relationships between the azimuth characteristics of the S–S wave and the source–receiver offset and the dip angle of the fracture outside the borehole. Results indicate that the SH–SH and SV–SV waves cannot be effectively distinguished by amplitude at some offset ranges under low- and high-fracture dip angle conditions, and the offset ranges are related to formation properties and fracture dip angle. In these cases, the fracture azimuth determined by the amplitude of the S–S wave not only has a $180^\circ $ uncertainty but may also have a $90^\circ $ difference from the actual value. Under these situations, the P–P, S–P and S–S waves can be combined to solve the problem of the $90^\circ $ difference in the azimuth determination of fractures outside the borehole, especially for a low-dip-angle fracture.


Sign in / Sign up

Export Citation Format

Share Document