scholarly journals Dip‐moveout processing by Fourier transform in anisotropic media

Geophysics ◽  
1997 ◽  
Vol 62 (4) ◽  
pp. 1260-1269 ◽  
Author(s):  
John E. Anderson ◽  
Ilya Tsvankin

Conventional dip‐moveout (DMO) processing is designed for isotropic media and cannot handle angle‐dependent velocity. We show that Hale's isotropic DMO algorithm remains valid for elliptical anisotropy but may lead to serious errors for nonelliptical models, even if velocity anisotropy is moderate. Here, Hale's constant‐velocity DMO method is extended to anisotropic media. The DMO operator, to be applied to common‐offset data corrected for normal moveout (NMO), is based on the analytic expression for dip‐dependent NMO velocity given by Tsvankin. Since DMO correction in anisotropic media requires knowledge of the velocity field, it should be preceded by an inversion procedure designed to obtain the normal‐moveout velocity as a function of ray parameter. For transversely isotropic models with a vertical symmetry axis (VTI media), P‐wave NMO velocity depends on a single anisotropic coefficient (η) that can be determined from surface reflection data. Impulse responses and synthetic examples for typical VTI media demonstrate the accuracy and efficiency of this DMO technique. Once the inversion step has been completed, the NMO-DMO sequence does not take any more computing time than the genetic Hale method in isotropic media. Our DMO operator is not limited to vertical transverse isotropy as it can be applied in the same fashion in symmetry planes of more complicated anisotropic models such as orthorhombic.

Geophysics ◽  
1995 ◽  
Vol 60 (1) ◽  
pp. 268-284 ◽  
Author(s):  
Ilya Tsvankin

Description of reflection moveout from dipping interfaces is important in developing seismic processing methods for anisotropic media, as well as in the inversion of reflection data. Here, I present a concise analytic expression for normal‐moveout (NMO) velocities valid for a wide range of homogeneous anisotropic models including transverse isotropy with a tilted in‐plane symmetry axis and symmetry planes in orthorhombic media. In transversely isotropic media, NMO velocity for quasi‐P‐waves may deviate substantially from the isotropic cosine‐of‐dip dependence used in conventional constant‐velocity dip‐moveout (DMO) algorithms. However, numerical studies of NMO velocities have revealed no apparent correlation between the conventional measures of anisotropy and errors in the cosine‐of‐dip DMO correction (“DMO errors”). The analytic treatment developed here shows that for transverse isotropy with a vertical symmetry axis, the magnitude of DMO errors is dependent primarily on the difference between Thomsen parameters ε and δ. For the most common case, ε − δ > 0, the cosine‐of‐dip–corrected moveout velocity remains significantly larger than the moveout velocity for a horizontal reflector. DMO errors at a dip of 45 degrees may exceed 20–25 percent, even for weak anisotropy. By comparing analytically derived NMO velocities with moveout velocities calculated on finite spreads, I analyze anisotropy‐induced deviations from hyperbolic moveout for dipping reflectors. For transversely isotropic media with a vertical velocity gradient and typical (positive) values of the difference ε − δ, inhomogeneity tends to reduce (sometimes significantly) the influence of anisotropy on the dip dependence of moveout velocity.


Geophysics ◽  
1997 ◽  
Vol 62 (6) ◽  
pp. 1855-1866 ◽  
Author(s):  
Jack K. Cohen

In their studies of transversely isotropic media with a vertical symmetry axis (VTI media), Alkhalifah and Tsvankin observed that, to a high numerical accuracy, the normal moveout (NMO) velocity for dipping reflectors as a function of ray parameter p depends mainly on just two parameters, each of which can be determined from surface P‐wave observations. They substantiated this result by using the weak‐anisotropy approximation and exploited it to develop a time‐domain processing sequence that takes into account vertical transverse isotropy. In this study, the two‐parameter Alkhalifah‐Tsvankin result was further examined analytically. It was found that although there is (as these authors already observed) some dependence on the remaining parameters of the problem, this dependence is weak, especially in the practically important regimes of weak to moderately strong transverse isotropy and small ray parameter. In each of these regimes, an analytic solution is derived for the anisotropy parameter η required for time‐domain P‐wave imaging in VTI media. In the case of elliptical anisotropy (η = 0), NMO velocity expressed through p is fully controlled just by the zero‐dip NMO velocity—one of the Alkhalifah‐ Tsvankin parameters. The two‐parameter representation of NMO velocity also was shown to be exact in another limit—that of the zero shear‐wave vertical velociy. The analytic results derived here are based on new representations for both the P‐wave phase velocity and normal moveout velocity in terms of the ray parameter, with explicit expressions given for the cases of vanishing onaxis shear speed, weak to moderate transverse isotropy, and small to moderate ray parameter. Using these formulas, I have rederived and, in some cases, extended in a uniform manner various results of Tsvankin, Alkhalifah, and others. Examples include second‐order expansions in the anisotropy parameters for both the P‐wave phase‐velocity function and NMO‐velocity function, as well as expansions in powers of the ray parameter for both of these functions. I have checked these expansions against the corresponding exact functions for several choices of the anisotropy parameters.


Geophysics ◽  
1996 ◽  
Vol 61 (2) ◽  
pp. 467-483 ◽  
Author(s):  
Ilya Tsvankin

Progress in seismic inversion and processing in anisotropic media depends on our ability to relate different seismic signatures to the anisotropic parameters. While the conventional notation (stiffness coefficients) is suitable for forward modeling, it is inconvenient in developing analytic insight into the influence of anisotropy on wave propagation. Here, a consistent description of P‐wave signatures in transversely isotropic (TI) media with arbitrary strength of the anisotropy is given in terms of Thomsen notation. The influence of transverse isotropy on P‐wave propagation is shown to be practically independent of the vertical S‐wave velocity [Formula: see text], even in models with strong velocity variations. Therefore, the contribution of transverse isotropy to P‐wave kinematic and dynamic signatures is controlled by just two anisotropic parameters, ε and δ, with the vertical velocity [Formula: see text] being a scaling coefficient in homogeneous models. The distortions of reflection moveouts and amplitudes are not necessarily correlated with the magnitude of velocity anisotropy. The influence of transverse isotropy on P‐wave normal‐moveout (NMO) velocity in a horizontally layered medium, on small‐angle reflection coefficient, and on point‐force radiation in the symmetry direction is entirely determined by the parameter δ. Another group of signatures of interest in reflection seisimology—the dip‐dependence of NMO velocity, magnitude of nonhyperbolic moveout, time‐migration impulse response, and the radiation pattern near vertical—is dependent on both anisotropic parameters (ε and δ) and is primarily governed by the difference between ε and δ. Since P‐wave signatures are so sensitive to the value of ε − δ, application of the elliptical‐anisotropy approximation (ε = δ) in P‐wave processing may lead to significant errors. Many analytic expressions given in the paper remain valid in transversely isotropic media with a tilted symmetry axis. Moreover, the equation for NMO velocity from dipping reflectors, as well as the nonhyperbolic moveout equation, can be used in symmetry planes of any anisotropic media (e.g., orthorhombic).


Geophysics ◽  
1996 ◽  
Vol 61 (3) ◽  
pp. 835-845 ◽  
Author(s):  
John Anderson ◽  
Tariq Alkhalifah ◽  
Ilya Tsvankin

The main advantage of Fowler’s dip‐moveout (DMO) method is the ability to perform velocity analysis along with the DMO removal. This feature of Fowler DMO becomes even more attractive in anisotropic media, where imaging methods are hampered by the difficulty in reconstructing the velocity field from surface data. We have devised a Fowler‐type DMO algorithm for transversely isotropic media using the analytic expression for normal‐moveout velocity. The parameter‐estimation procedure is based on the results of Alkhalifah and Tsvankin showing that in transversely isotropic media with a vertical axis of symmetry (VTI) the P‐wave normal‐moveout (NMO) velocity as a function of ray parameter can be described fully by just two coefficients: the zero‐dip NMO velocity [Formula: see text] and the anisotropic parameter η (η reduces to the difference between Thomsen parameters ε and δ in the limit of weak anisotropy). In this extension of Fowler DMO, resampling in the frequency‐wavenumber domain makes it possible to obtain the values of [Formula: see text] and η by inspecting zero‐offset (stacked) panels for different pairs of the two parameters. Since most of the computing time is spent on generating constant‐velocity stacks, the added computational effort caused by the presence of anisotropy is relatively minor. Synthetic and field‐data examples demonstrate that the isotropic Fowler DMO technique fails to generate an accurate zero‐offset section and to obtain the zero‐dip NMO velocity for nonelliptical VTI models. In contrast, this anisotropic algorithm allows one to find the values of the parameters [Formula: see text] and η (sufficient to perform time migration as well) and to correct for the influence of transverse isotropy in the DMO processing. When combined with poststack F-K Stolt migration, this method represents a complete inversion‐processing sequence capable of recovering the effective parameters of transversely isotropic media and producing migrated images for the best‐fit homogeneous anisotropic model.


Geophysics ◽  
1994 ◽  
Vol 59 (4) ◽  
pp. 591-596 ◽  
Author(s):  
Suhas Phadke ◽  
S. Kapotas ◽  
N. Dai ◽  
Ernest R. Kanasewich

Wave propagation in transversely isotropic media is governed by the horizontal and vertical wave velocities. The quasi‐P(qP) wavefront is not an ellipse; therefore, the propagation cannot be described by the wave equation appropriate for elliptically anisotropic media. However, for a limited range of angles from the vertical, the dispersion relation for qP‐waves can be approximated by an ellipse. The horizontal velocity necessary for this approximation is different from the true horizontal velocity and depends upon the physical properties of the media. In the method described here, seismic data is migrated using a 45-degree wave equation for elliptically anisotropic media with the horizontal velocity determined by comparing the 45-degree elliptical dispersion relation and the quasi‐P‐dispersion relation. The method is demonstrated for some synthetic data sets.


Geophysics ◽  
1987 ◽  
Vol 52 (4) ◽  
pp. 564-567 ◽  
Author(s):  
J. Wright

Studies have shown that elastic properties of materials such as shale and chalk are anisotropic. With the increasing emphasis on extraction of lithology and fluid content from changes in reflection amplitude with shot‐to‐group offset, one needs to know the effects of anisotropy on reflectivity. Since anisotropy means that velocity depends upon the direction of propagation, this angular dependence of velocity is expected to influence reflectivity changes with offset. These effects might be particularly evident in deltaic sand‐shale sequences since measurements have shown that the P-wave velocity of shales in the horizontal direction can be 20 percent higher than the vertical P-wave velocity. To investigate this behavior, a computer program was written to find the P- and S-wave reflectivities at an interface between two transversely isotropic media with the axis of symmetry perpendicular to the interface. Models for shale‐chalk and shale‐sand P-wave reflectivities were analyzed.


Geophysics ◽  
1987 ◽  
Vol 52 (12) ◽  
pp. 1654-1664 ◽  
Author(s):  
N. C. Banik

An interesting physical meaning is presented for the anisotropy parameter δ, previously introduced by Thomsen to describe weak anisotropy in transversely isotropic media. Roughly, δ is the difference between the P-wave and SV-wave anisotropies of the medium. The observed systematic depth errors in the North Sea are reexamined in view of the new interpretation of the moveout velocity through δ. The changes in δ at an interface adequately describe the effects of transverse isotropy on the P-wave reflection amplitude, The reflection coefficient expression is linearized in terms of changes in elastic parameters. The linearized expression clearly shows that it is the variation of δ at the interface that gives the anisotropic effects at small incidence angles. Thus, δ effectively describes both the moveout velocity and the reflection amplitude variation, two very important pieces of information in reflection seismic prospecting, in the presence of transverse isotropy.


Geophysics ◽  
1998 ◽  
Vol 63 (3) ◽  
pp. 1079-1092 ◽  
Author(s):  
Vladimir Grechka ◽  
Ilya Tsvankin

We present a new equation for normal‐moveout (NMO) velocity that describes azimuthally dependent reflection traveltimes of pure modes from both horizontal and dipping reflectors in arbitrary anisotropic inhomogeneous media. With the exception of anomalous areas such as those where common‐midpoint (CMP) reflection time decreases with offset, the azimuthal variation of NMO velocity represents an ellipse in the horizontal plane, with the orientation of the axes determined by the properties of the medium and the direction of the reflector normal. In general, a minimum of three azimuthal measurements is necessary to reconstruct the best‐fit ellipse and obtain NMO velocity in all azimuthal directions. This result provides a simple way to correct for the azimuthal variation in stacking velocity often observed in 3-D surveys. Even more importantly, analytic expressions for the parameters of the NMO ellipse can be used in the inversion of moveout data for the anisotropic coefficients of the medium. For homogeneous transversely isotropic media with a vertical axis of symmetry (VTI media), our equation for azimuthally dependent NMO velocity from dipping reflectors becomes a relatively simple function of phase velocity and its derivatives. We show that the zero‐dip NMO velocity Vnmo(0) and the anisotropic coefficient η are sufficient to describe the P-wave NMO velocity for any orientation of the CMP line with respect to the dip plane of the reflector. Using our formalism, Vnmo(0) and η (the only parameters needed for time processing) can be found from the dip‐dependent NMO velocity at any azimuth or, alternatively, from the azimuthally dependent NMO for a single dipping reflector. We also apply this theory to more complicated azimuthally anisotropic models with the orthorhombic symmetry used to describe fractured reservoirs. For reflections from horizontal interfaces in orthorhombic media, the axes of the normal moveout ellipse are aligned with the vertical symmetry planes. Therefore, azimuthal P-wave moveout measurements can be inverted for the orientation of the symmetry planes (typically determined by the fracture direction) and the NMO velocities within them. If the vertical velocity is known, symmetry‐plane NMO velocities make it possible to estimate two anisotropic parameters equivalent to Thomsen’s coefficient δ for transversely isotropic media.


Geophysics ◽  
2000 ◽  
Vol 65 (3) ◽  
pp. 919-933 ◽  
Author(s):  
Michael A. Schoenberg ◽  
Maarten V. de Hoop

To decouple qP and qSV sheets of the slowness surface of a transversely isotropic (TI) medium, a sequence of rational approximations to the solution of the dispersion relation of a TI medium is introduced. Originally conceived to allow isotropic P-wave processing schemes to be generalized to encompass the case of qP-waves in transverse isotropy, the sequence of approximations was found to be applicable to qSV-wave processing as well, although a higher order of approximation is necessary for qSV-waves than for qP-waves to yield the same accuracy. The zeroth‐order approximation, about which all other approximations are taken, is that of elliptical TI, which contains the correct values of slowness and its derivative along and perpendicular to the medium’s axis of symmetry. Successive orders of approximation yield the correct values of successive orders of derivatives in these directions, thereby forcing the approximation into increasingly better fit at the intervening oblique angles. Practically, the first‐order approximation for qP-wave propagation and the second‐order approximation for qSV-wave propagation yield sufficiently accurate results for the typical transverse isotropy found in geological settings. After only slight modification to existing programs, the rational approximation allows for ray tracing, (f-k) domain migration, and split‐step Fourier migration in TI media—with little more difficulty than that encountered presently with such algorithms in isotropic media.


Sign in / Sign up

Export Citation Format

Share Document