Tomographic imaging of permafrost using three-component seismic cone-penetration test

Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. H55-H65 ◽  
Author(s):  
Anne-Marie LeBlanc ◽  
Richard Fortier ◽  
Calin Cosma ◽  
Michel Allard

We conducted seismic cone-penetration tests (SCPT) and tomographic imaging in a permafrost mound in northern Quebec, Canada, to study the cryostratigraphy and assess the seismic properties of permafrost at temperatures near [Formula: see text]. A swept impact source generating both P- and S-waves and penetrometer-mounted three-component accelerometers were used to acquire surface-to-depth first-arrival times as input to produce 2D images of P- and S-wave velocities. Based on the three-component accelerometer records and the propagation modes of body waves, the P- and S-wave first arrivals were detected and discriminated. The inversion of the first-arrival times was based on the simultaneous iterative reconstruction technique. The multioffset surface-to-depth geometry used in this study limits the lateral resolution of tomographic imaging. However, the vertical variation in seismic velocities in the permafrost mound shows good reproducibility and can be compared to the cone data. The gathering of cone data such as cone resistance, friction ratio, electrical resistivity, and temperature, along with the seismic velocities, provides new insights into the cryostratigraphy of permafrost. While the cone data are affected by the vertical heterogeneity because of the complex sequence of ice lenses and frozen soil layers of a few centimeters thickness, the smooth velocity variations of P- and S-waves characterized by a wavelength of a few meters depend on the bulk physical properties of permafrost. The P- and S-wave velocities varied from [Formula: see text] and from [Formula: see text], respectively, for a temperature range between [Formula: see text] and [Formula: see text]. At this temperature range, the variations in unfrozen water content are important and affect directly the seismic properties of permafrost. The decrease in P- and S-waves velocities in depth with the permafrost mound depends nonlinearly on the increase of unfrozen water content from 9% to 30% for a temperature increase from [Formula: see text].

Geophysics ◽  
1988 ◽  
Vol 53 (5) ◽  
pp. 659-667 ◽  
Author(s):  
S. T. Chen

Laboratory measurements have verified a novel technique for direct shear‐wave logging in hard and soft formations with a dipole source, as recently suggested in theoretical studies. Conventional monopole logging tools are not capable of measuring shear waves directly. In particular, no S waves are recorded in a soft formation with a conventional monopole sonic tool because there are no critically refracted S rays when the S-wave velocity of the rock is less than the acoustic velocity of the borehole fluid. The present studies were conducted in the laboratory with scale models representative of sonic logging conditions in the field. We have used a concrete model to represent hard formations and a plastic model to simulate a soft formation. The dipole source, operating at frequencies lower than those conventionally used in logging, substantially suppressed the P wave and excited a wave train whose first arrival traveled at the S-wave velocity. As a result, one can use a dipole source to log S-wave velocity directly on‐line by picking the first arrival of the full wave train, in a process similar to that used in conventional P-wave logging. Laboratory experiments with a conventional monopole source in a soft formation did not produce S waves. However, the S-wave velocity was accurately estimated by using Biot’s theory, which required measuring the Stoneley‐wave velocity and knowing other borehole parameters.


2015 ◽  
Vol 7 (3) ◽  
pp. 1909-1939
Author(s):  
M. L. Kolstrup ◽  
V. Maupin

Abstract. We present a data processing routine to compute relative finite-frequency travel time residuals using a combination of the Iterative Cross-Correlation and Stack (ICCS) algorithm and the MultiChannel Cross-Correlation method (MCCC). The routine has been tailored for robust measurement of P and S wave travel times in several frequency bands and for avoiding cycle-skipping problems at the shortest periods. We also investigate the adequacy of ray theory to calculate crustal corrections for finite-frequency regional tomography in normal continental settings with non-thinned crust. We find that ray theory is valid for both P and S waves at all relevant frequencies as long as the crust does not contain low-velocity layers associated with sediments at the surface. Reverberations in the sediments perturb the arrival times of the S waves and the long-period P waves significantly, and need to be accounted for in crustal corrections. The data processing routine and crustal corrections are illustated using data from a network in southwestern Scandinavia.


Geophysics ◽  
1982 ◽  
Vol 47 (5) ◽  
pp. 771-783 ◽  
Author(s):  
J. E. White

Radiation of elastic waves from a point force or from a localized torque into a transversely isotropic medium has been formulated in terms of displacement potentials, and transient waveforms have been computed by numerical Fourier inversion. For isotropic sandstone, this procedure yields P‐ and S‐wave pulses whose arrival times and magnitudes agree with theory. For a range of anisotropic rocks, arrival times of quasi‐P‐waves and quasi‐S‐waves agree with asymptotic theory. For extreme anisotropy, some quasi‐S‐wave pulses arrive at times which are not predicted by asymptotic theory. Magnitudes have not been compared with results of asymptotic theory, but decrease with distance appears to be in agreement. This Fourier inversion method gives near‐source changes in waveform which are not obtainable from the asymptotic theory.


Solid Earth ◽  
2015 ◽  
Vol 6 (4) ◽  
pp. 1117-1130 ◽  
Author(s):  
M. L. Kolstrup ◽  
V. Maupin

Abstract. We present a data-processing routine to compute relative finite-frequency travel time residuals using a combination of the Iterative Cross-Correlation and Stack (ICCS) algorithm and the Multi-Channel Cross-Correlation method (MCCC). The routine has been tailored for robust measurement of P- and S-wave travel times in several frequency bands and for avoiding cycle-skipping problems at the shortest periods. We also investigate the adequacy of ray theory to calculate crustal corrections for finite-frequency regional tomography in normal continental settings with non-thinned crust. We find that ray theory is valid for both P and S waves at all relevant frequencies as long as the crust does not contain low-velocity layers associated with sediments at the surface. Reverberations in the sediments perturb the arrival times of the S waves and the long-period P waves significantly, and need to be accounted for in crustal corrections. The data-processing routine and crustal corrections are illustrated using data from a~network in southwestern Scandinavia.


1983 ◽  
Vol 73 (4) ◽  
pp. 1063-1076
Author(s):  
Thorne Lay ◽  
Donald V. Helmberger

abstract Relationships between travel-time and amplitude station anomalies are examined for short- and long-period SH waves and short-period P waves recorded at North American WWSSN and Canadian Seismic Network stations. Data for two azimuths of approach to North America are analyzed. To facilitate intercomparison of the data, the S-wave travel times and amplitudes are measured from the same records, and the amplitude data processing is similar for both P and S waves. Short-period P- and S-wave amplitudes have similar regional variations, being relatively low in the western tectonic region and enhanced in the shield and mid-continental regions. The east coast has intermediate amplitude anomalies and systematic, large azimuthal travel-time variations. There is a general correlation between diminished short-period amplitudes and late S-wave arrival times, and enhanced amplitudes and early arrivals. However, this correlation is not obvious within the eastern and western provinces separately, and the data are consistent with a step-like shift in amplitude level across the Rocky Mountain front. Long-period S waves show no overall correlation between amplitude and travel-time anomalies.


2007 ◽  
Vol 178 (2) ◽  
pp. 127-136 ◽  
Author(s):  
Gilles Grandjean ◽  
Jean-Philippe Malet ◽  
Adnand Bitri ◽  
Ombeline Méric

Abstract Geophysical methods such as seismic surveying or electrical resistivity imaging appear to be well adapted to investigate landslide structure and understand related mechanisms. They allow direct and non-intrusive measurements of acoustic (P), shear (S) waves velocity and electrical resistivity, three physical parameters considered as essential to define the properties of reworked moving materials. Both methods were applied at the “Super-Sauze” site, in the French South Alps, where a typical example of an intra-material mudslide can be observed. Measurements were taken simultaneously along a profile of 325 m in length, perpendicularly to the axis of the mudslide. The P and S-wave velocity fields, as well as the electrical resistivity field, were inverted from recorded data according to suitable algorithms. P and S-wave velocities as well as resistivity tomographies are presented and discussed in term of reliability. Preliminary interpreted results show a correlation between the seismic velocities and electrical resistivity data, confirming that the simultaneous use of both methods gives complementary information on the geomechanical behaviour of the landslide. The seismic data provide information on the variations of fissure density and on the presence of deformed material whereas the electrical resistivity data provide information on the variations of water content within the mudslide. In order to go deeper into the interpretation of the geomechanical behaviour of the mudslide from geophysical data, a data fusion strategy based on fuzzy subsets theory is developed. The computed fuzzy cross-sections show the possibility of geomechanical hypotheses to be realized in specific areas of the tomographic cross-sections highlighting the places where plastic or solid-body deformations could occur. This information is consistent with the geotechnical data and the borehole inclinometer measurements available for the mudslide.


Author(s):  
Hao Wang ◽  
Ning Li ◽  
Caizhi Wang ◽  
Hongliang Wu ◽  
Peng Liu ◽  
...  

Abstract In the process of dipole-source acoustic far-detection logging, the azimuth of the fracture outside the borehole can be determined with the assumption that the SH–SH wave is stronger than the SV–SV wave. However, in slow formations, the considerable borehole modulation highly complicates the dipole-source radiation of SH and SV waves. A 3D finite-difference time-domain method is used to investigate the responses of the dipole-source reflected shear wave (S–S) in slow formations and explain the relationships between the azimuth characteristics of the S–S wave and the source–receiver offset and the dip angle of the fracture outside the borehole. Results indicate that the SH–SH and SV–SV waves cannot be effectively distinguished by amplitude at some offset ranges under low- and high-fracture dip angle conditions, and the offset ranges are related to formation properties and fracture dip angle. In these cases, the fracture azimuth determined by the amplitude of the S–S wave not only has a $180^\circ $ uncertainty but may also have a $90^\circ $ difference from the actual value. Under these situations, the P–P, S–P and S–S waves can be combined to solve the problem of the $90^\circ $ difference in the azimuth determination of fractures outside the borehole, especially for a low-dip-angle fracture.


Sign in / Sign up

Export Citation Format

Share Document