Peripheral representation of antennal orientation by the scapal hair plate of the cockroach Periplaneta americana

2001 ◽  
Vol 204 (24) ◽  
pp. 4301-4309 ◽  
Author(s):  
J. Okada ◽  
Y. Toh

SUMMARY Arthropods have hair plates that are clusters of mechanosensitive hairs, usually positioned close to joints, which function as proprioceptors for joint movement. We investigated how angular movements of the antenna of the cockroach (Periplaneta americana) are coded by antennal hair plates. A particular hair plate on the basal segment of the antenna, the scapal hair plate, can be divided into three subgroups: dorsal, lateral and medial. The dorsal group is adapted to encode the vertical component of antennal direction, while the lateral and medial groups are specialized for encoding the horizontal component. Of the three subgroups of hair sensilla, those of the lateral scapal hair plate may provide the most reliable information about the horizontal position of the antenna, irrespective of its vertical position. Extracellular recordings from representative sensilla of each scapal hair plate subgroup revealed the form of the single-unit impulses in response to hair deflection. The mechanoreceptors were characterized as typically phasic-tonic. The tonic discharge was sustained indefinitely (>20 min) as long as the hair was kept deflected. The spike frequency in the transient (dynamic) phase was both velocity- and displacement-dependent, while that in the sustained (steady) phase was displacement-dependent.

Author(s):  
David M. Wittman

Galilean relativity is a useful description of nature at low speed. Galileo found that the vertical component of a projectile’s velocity evolves independently of its horizontal component. In a frame that moves horizontally along with the projectile, for example, the projectile appears to go straight up and down exactly as if it had been launched vertically. The laws of motion in one dimension are independent of any motion in the other dimensions. This leads to the idea that the laws of motion (and all other laws of physics) are equally valid in any inertial frame: the principle of relativity. This principle implies that no inertial frame can be considered “really stationary” or “really moving.” There is no absolute standard of velocity (contrast this with acceleration where Newton’s first law provides an absolute standard). We discuss some apparent counterexamples in everyday experience, and show how everyday experience can be misleading.


1869 ◽  
Vol 6 ◽  
pp. 76-78
Author(s):  
David Brewster

In repeating some of the experiments of Professor Plateau, described in seven interesting memoirs published in “The Transactions of the Belgian Academy,” and in prosecuting his own experiments on the colours of the soap-bubble, the author of this paper observed several new phenomena which may have escaped the notice of the Belgian philosopher.Professor Plateau has described and drawn the beautiful systems of soap-films, obtained by lifting from a soap solution a cube made of wires about one and a half inch long. This system is a polyhedron, composed of twelve similar films stretching from the wires, and united to a plane quadrangular film in the centre. When this vertical film was blown upon, M. Von Rees observed that it was reduced to a line, and then reproduced in a horizontal position, from which it could be blown again into a vertical position.


2016 ◽  
Vol 14 (1) ◽  
pp. e1201 ◽  
Author(s):  
MaoSheng Ge ◽  
Pute Wu ◽  
Delan Zhu ◽  
Daniel P. Ames

<p>An indoor experiment was conducted to analyze the movement characteristics of different sized droplets and their influence on water application rate distribution and kinetic energy distribution. Radial droplets emitted from a Nelson D3000 sprinkler nozzle under 66.3, 84.8, and 103.3 kPa were measured in terms of droplet velocity, landing angle, and droplet kinetic energy and results were compared to natural rainfall characteristics. Results indicate that sprinkler irrigation droplet landing velocity for all sizes of droplets is not related to nozzle pressure and the values of landing velocity are very close to that of natural rainfall. The velocity horizontal component increases with radial distance while the velocity vertical component decreases with radial distance. Additionally, landing angle of all droplet sizes decreases with radial distance. The kinetic energy is decomposed into vertical component and horizontal component due to the oblique angles of droplet impact on the surface soil, and this may aggravate soil erosion. Therefore the actual oblique angle of impact should be considered in actual field conditions and measures should be taken for remediation of soil erosion if necessary.</p>


Geophysics ◽  
2012 ◽  
Vol 77 (2) ◽  
pp. V41-V59 ◽  
Author(s):  
Olena Tiapkina ◽  
Martin Landrø ◽  
Yuriy Tyapkin ◽  
Brian Link

The advent of single receiver point, multi-component geophones has necessitated that ground roll be removed in the processing flow rather than through acquisition design. A wide class of processing methods for ground-roll elimination is polarization filtering. A number of these methods use singular value decomposition (SVD) or some related transformations. We focus on a single-station SVD-based polarization filter that we consider to be one of the best in the industry. The method is comprised of two stages: (1) ground-roll detection and (2) ground-roll estimation and filtering. To detect the ground roll, a special attribute dependent on the singular values of a three-column matrix formed by a sliding time window is used. The ground roll is approximated and subtracted using the first two eigenimages of this matrix. To limit the possible damage to the signal, the filter operates within the record intervals where the ground roll is detected and within the ground-roll frequency bandwidth only. We improve the ground-roll detector to make it theoretically insensitive to ambient noise and more sensitive to the presence of ground roll. The advantage of the new detector is demonstrated on synthetic and field data sets. We estimate theoretically and with synthetic data the attenuation of the underlying reflections that can be caused by the polarization filter. We show that the underlying signal always loses almost all the energy on the vertical component and on the horizontal component in the ground-roll propagation plane and within the ground-roll frequency bandwidth. The only signal component, if it exists, that can retain a significant part of its energy is the horizontal component orthogonal to the above plane. When 2D 3C field operations are conducted, the signal particle motion can deviate from the ground-roll propagation plane and can therefore retain some of its energy due to a set of offline reflections. In the case of 3D 3C seismic surveys, the reflected signal always deviates from the ground-roll propagation plane on the receiver lines that do not contain the source. This is confirmed with a 2.5D 3C synthetic data set. We discuss when the ability of the filter to effectively subtract the ground roll may, or may not, allow us to ignore the inevitable harm that is done to the underlying reflected waves.


1965 ◽  
Vol 209 (2) ◽  
pp. 307-311 ◽  
Author(s):  
S. T. Kitai ◽  
H. Ha ◽  
F. Morin

The lateral cervical nucleus (LCN) of the dog ( Canis familiaris) was investigated by histological and microelectrode technique. The LCN extends from the obex to the upper C3 and is located ventrolateral to the dorsal horn. Cell counts showed over 6,000 cells in the nuclei on both sides and the cell size varied from 20 to 45 µ. Single-unit analysis of the 220 neurons showed that the majority of cells responded to touch, some to pressure, some to pressure and touch, and an extremely limited number to joint movement. All responses were recorded from the ipsilateral half of the body. More than half of these neurons had small peripheral receptive fields located mostly in the distal parts of the limbs. The rest, with large receptive fields, were located mainly in the proximal parts of the limbs and the trunk. The peripheral receptive fields were almost equally distributed among the forelimb, trunk, and hindlimb for touch. The prominence of the hindlimb representation over the forelimb was found for pressure and for touch and pressure. The results indicate that the organization of the afferent input to the LCN has some similarity to that of the medial lemniscus system.


2001 ◽  
Vol 1 (1/2) ◽  
pp. 23-31 ◽  
Author(s):  
V. S. Ismaguilov ◽  
Yu. A. Kopytenko ◽  
K. Hattori ◽  
P. M. Voronov ◽  
O. A. Molchanov ◽  
...  

Abstract. Measurements of ULF electromagnetic disturbances were carried out in Japan before and during a seismic active period (1 February 2000 to 26 July 2000). A network consists of two groups of magnetic stations spaced apart at a distance of ≈140 km. Every group consists of three, 3-component high sensitive magnetic stations arranged in a triangle and spaced apart at a distance of 4–7 km. The results of the ULF magnetic field variation analysis in a frequency range of F = 0.002–0.5 Hz in connection with nearby earth-quakes are presented. Traditional Z/G ratios (Z is the vertical component, G is the total horizontal component), magnetic gradient vectors and phase velocities of ULF waves propagating along the Earth’s surface were constructed in several frequency bands. It was shown that variations of the R(F) = Z/G parameter have a different character in three frequency ranges: F1 = 0.1 ± 0.005, F2 = 0.01 ± 0.005 and F3 = 0.005 ± 0.003 Hz. Ratio R(F3)/R(F1) sharply increases 1–3 days before strong seismic shocks. Defined in a frequency range of F2 = 0.01 ± 0.005 Hz during nighttime intervals (00:00–06:00 LT), the amplitudes of Z and G component variations and the Z/G ratio started to increase ≈ 1.5 months before the period of the seismic activity. The ULF emissions of higher frequency ranges sharply increased just after the seismic activity start. The magnetic gradient vectors (∇ B ≈ 1 – 5 pT/km), determined using horizontal component data (G ≈ 0.03 – 0.06 nT) of the magnetic stations of every group in the frequency range F = 0.05 ± 0.005 Hz, started to point to the future center of the seismic activity just before the seismoactive period; furthermore they continued following space displacements of the seismic activity center. The phase velocity vectors (V ≈ 20 km/s for F = 0.0067 Hz), determined using horizontal component data, were directed from the seismic activity center. Gradient vectors of the vertical component pointed to the closest seashore (known as the "sea shore" effect). The location of the seismic activity centers by two gradient vectors, constructed at every group of magnetic stations, gives an ≈ 10 km error in this experiment.


1994 ◽  
Vol 276 ◽  
pp. 233-260 ◽  
Author(s):  
A. Colin de Verdière ◽  
R. Schopp

It is well known that the widely used powerful geostrophic equations that single out the vertical component of the Earth's rotation cease to be valid near the equator. Through a vorticity and an angular momentum analysis on the sphere, we show that if the flow varies on a horizontal scale L smaller than (Ha)1/2 (where H is a vertical scale of motion and a the Earth's radius), then equatorial dynamics must include the effect of the horizontal component of the Earth's rotation. In equatorial regions, where the horizontal plane aligns with the Earth's rotation axis, latitudinal variations of planetary angular momentum over such scales become small and approach the magnitude of its radial variations proscribing, therefore, vertical displacements to be freed from rotational constraints. When the zonal flow is strong compared to the meridional one, we show that the zonal component of the vorticity equation becomes (2Ω.Δ)u1 = g/ρ0)(∂ρ/a∂θ). This equation, where θ is latitude, expresses a balance between the buoyancy torque and the twisting of the full Earth's vorticity by the zonal flow u1. This generalization of the mid-latitude thermal wind relation to the equatorial case shows that u1 may be obtained up to a constant by integrating the ‘observed’ density field along the Earth's rotation axis and not along gravity as in common mid-latitude practice. The simplicity of this result valid in the finite-amplitude regime is not shared however by the other velocity components.Vorticity and momentum equations appropriate to low frequency and predominantly zonal flows are given on the equatorial β-plane. These equatorial results and the mid-latitude geostrophic approximation are shown to stem from an exact generalized relation that relates the variation of dynamic pressure along absolute vortex lines to the buoyancy field. The usual hydrostatic equation follows when the aspect ratio δ = H/L is such that tan θ/δ is much larger than one. Within a boundary-layer region of width (Ha)1/2 and centred at the equator, the analysis shows that the usually neglected Coriolis terms associated with the horizontal component of the Earth's rotation must be kept.Finally, some solutions of zonally homogeneous steady equatorial inertial jets are presented in which the Earth's vorticity is easily turned upside down by the shear flow and the correct angular momentum ‘Ωr2cos2(θ)+u1rCos(θ)’ contour lines close in the vertical–meridional plane.


Geophysics ◽  
1967 ◽  
Vol 32 (4) ◽  
pp. 617-632
Author(s):  
Thomas F. Potter ◽  
Robert B. Roden

The use of seismometer arrays containing both horizontal‐ and vertical‐component instruments for attenuation of surface‐wave noise has been studied theoretically. If a process can be defined to estimate the vertical noise component by operating on the outputs of one or more horizontal‐component seismometers, the estimate may be subtracted from the vertical‐component record to improve signal‐to‐noise ratio. The exact waveforms of vertically‐incident signals must be preserved in an operation of this kind. Formulas are developed to describe the response of a system employing three components measured at a single point. This system is found to be useful only in cases where the noise is strongly directional. A physical separation between the vertical‐ and horizontal‐component instruments is necessary to resolve the difficulties caused by uncertainties in the sense of the propagation velocity vector and particle orbit vector. Formulas, derived for systems consisting of circular rings of radially‐oriented horizontals and a central vertical show, that useful noise rejection can be obtained even in the most unfavorable case of uniform azimuthal noise distribution. The performance of arrays of this kind is not affected very much by uncorrelated noise or Love‐wave noise. Comparisons with similar arrays containing only vertical‐component seismometers indicate that, for some of the noise models studied, the multicomponent array should provide useful noise rejection over a greater bandwidth and at longer wavelengths than an all‐vertical array with the same dimensions.


The measurement of the vertical component of the earth’s magnetic field is a less simple operation than that of the horizontal component. The horizontal field measurements are on a satisfactory basis, whether made by the swinging magnet method, or by the more recently developed electric magnetometers, in which known magnetic fields may be provided by means of known currents flowing through coils of known dimensions.


Geophysics ◽  
2015 ◽  
Vol 80 (1) ◽  
pp. EN1-EN11 ◽  
Author(s):  
Tatsunori Ikeda ◽  
Toshifumi Matsuoka ◽  
Takeshi Tsuji ◽  
Toru Nakayama

In surface-wave analysis, S-wave velocity estimations can be improved by the use of higher modes of the surface waves. The vertical component of P-SV waves is commonly used to estimate multimode Rayleigh waves, although Rayleigh waves are also included in horizontal components of P-SV waves. To demonstrate the advantages of using the horizontal components of multimode Rayleigh waves, we investigated the characteristics of the horizontal and vertical components of Rayleigh waves. We conducted numerical modeling and field data analyses rather than a theoretical study for both components of Rayleigh waves. As a result of a simulation study, we found that the estimated higher modes have larger relative amplitudes in the vertical and horizontal components as the source depth increases. In particular, higher-order modes were observed in the horizontal component data for an explosive source located at a greater depth. Similar phenomena were observed in the field data acquired by using a dynamite source at 15-m depth. Sensitivity analyses of dispersion curves to S-wave velocity changes revealed that dispersion curves additionally estimated from the horizontal components can potentially improve S-wave velocity estimations. These results revealed that when the explosive source was buried at a greater depth, the horizontal components can complement Rayleigh waves estimated from the vertical components. Therefore, the combined use of the horizontal component data with the vertical component data would contribute to improving S-wave velocity estimations, especially in the case of buried explosive source signal.


Sign in / Sign up

Export Citation Format

Share Document